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THEORY OF STRUCTURES 
 
DEFLECTION OF BEAMS 
 
The deflection of a beam is usually expressed in terms of its 
deflection from its original unloaded position. The deflection is 
measured from the original neutral surface of the beam to the 
neutral surface of the deformed beam. The configuration 
assumed by the deformed neutral surface is known as the elastic 
curve of the beam. 
 
 
 
 
 
 
 
 
 

Figure: Elastic Curve 
 
Methods of Determining Beam Deflections: 
 
Numerous methods are available for the determination of beam 
deflections. These methods includes 
 

1. Double – integration method 
2. Area – moment method 
3. Strain – energy method (Castigliano’s Theorem) 
4. Three – moment equation 
5. Conjugate – beam method 
6. Method of superposition 
7. Virtual work method 
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DOUBLE INTEGRATION METHOD 
 
The double integration method is a powerful tool in solving 
deflection and of a beam at any point because we will be able to 
get the equation of the elastic curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Calculus, the radius of curvature of a curve y = f(x) is given as 

ρ = [ 1+( dy/dx)2 ]

�d2y /dx2�

3/2
. Deflection of beams are so small such that the 

slope of the elastic curve is very small (dy / dx = 0), and squaring 
this expression the value becomes practically negligible, hence 
ρ =  1

d2y /dx2 = 1
y''

 . 
 
In Strength of Materials, the radius of curvature of a beam subject 
to bending is ρ = E I

M
. 

Therefore, E I
M

=  1
y''

 . 
 

y'' =  
M
E I

=  
1

E I
 M 
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If EI is constant, the equation may be written as: 
 

E I y'' =  M 
 
Where x and y are the coordinates shown in the figure above, y 
is the deflection of the beam at any distance x. E is the modulus 
of elasticity of the beam, I represent the moment of inertia about 
the neutral axis, and M represents the bending moment at a 
distance x from the end of the beam. The product EI is called the 
flexural rigidity of the beam. 
 
The first integration y’ yields the slope of the elastic curve and the 
second integration y gives the deflection of the beam at any 
distance x. 
 
The resulting solution must contain two constants of integration 
since EIy’’ = M is of second order. These two constants must be 
evaluated from known conditions concerning the slope deflection 
at certain points of the beam. For instance, in the case of a simply 
supported beam with rigid supports, at x = 0 and x = L, the 
deflection y = 0, and in locating the point of maximum deflection 
we simply set the slope of the elastic curve y’ to zero. 
 
AREA – MOMENT METHOD 
 
Another method of determining the slopes and deflections in 
beams is the area – moment method which involves the area of 
the moment diagram. 
 
Conduct the two points A and B shown in the figure: 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Moment Diagram 

 
Theorems on Area – Moment Method 
 
Theorem 1 
 
The change in slope between the tangents drawn to the elastic 
curve at any two points A and B is equal to the product of 1 / EI 
multiplied by the area of the moment diagram between these two 
points.  
 

θAB= 
1
EI

(AreaAB) 
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Theorem 2 
 
The deviation of any point B relative to the tangent drawn to the 
elastic curve at any point A, in a direction perpendicular to the 
original position of the beam, is equal to the product of 1/EI 
multiplied by the moment of an area about B of that part of the 
moment diagram between points A and B.  
 

tB/A= 
1
EI

 (AreaAB) X�B 
 

tA/B= 
1
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 (AreaAB) X�A 
 
 

Rules of Sign: 
 
 
 
 
 
 
 
 
 
Area and Centroid of Common Moment Diagram Shape 
(Spandrel) 
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STRAIN ENERGY METHODS 
 
These are various techniques (aside from the previous discussion 
in this section) for finding deformations and values of 
indeterminate reaction. These techniques are based upon 
geometric considerations. 
 
Strain energy method is based upon relations between the work 
done by external forces and the internal strain energy stored 
within the body during the deformation process. This process is 
more general and more powerful than the various geometric 
approaches. 
 
Strain Energy, U 
When an external force acts upon an elastic body and deforms it, 
the work done by the forces is stored within a body in the form of 
strain energy. The strain energy is always a scalar quantity. 
 
For a straight bar subjected to a normal force P (tension or 
compression), the internal strain energy U is 
 
  

U = 1
2
 P δ  

 

δ 
δ = PL / AE 

P 

P 



U = 
1
2

 P (PL / AE) 
 

U = 
P2L

2 A E
   

 
 
If the axial force P varies along the length of the bar 
 

U = �
P2dx
2 A E

L

0
  

 
 
For a circular shaft of length L subjected to a torque T, the internal 
strain energy U is 
 
  
 

U = 1
2
 T θ  

 
 U = 1

2
 T (TL / JG) 

 
  
 
 

U = 
T2L

2 J G
   

 
 
 

T 

T 

θ 
θ = TL / JG 



If the torque T acts along the length of the bar, the total strain 
energy is 
 

U = �
T2dx
2 J G

L

0
  

 
 
For a bar length L subject to a bending moment M, the internal 
strain energy U is 
 

1
ρ
 = M

E I
 = θ

L
   

 
 θ = ML

EI
  

 
 U = 1

2
 Mθ = 1

2
 M(ML / EI)  

 
 

U = 
M2L
2 E I

   
 
 
If the bending moment varies along the length of the bar, the total 
internal strain energy is 
 

U = �
M2dx
2 E I

L

0
 

 
Where θ is central angle subtended by the circular arc of radius 
ρ. 
 

M 

M 

θ 
θ = ML / EI 



CASTIGLIANO’S THEOREM 
 
The displacement of an elastic body under the point of application 
of any force, in the direction of that force, is given by the partial 
derivative of the total internal strain energy with respect to that 
force. 
 

δn = 
∂ U
∂ Pn

 

 
 
For a body subject to combined axial, torsional, and bending 
effects, Castigliano’s theorem is conveniently expressed as 
 

δn= �
P (∂P / ∂Pn)dx

AE
 + �

T (∂T / ∂Tn)dx
JG

 

+ �
M (∂M / ∂Pn)fx

EI
 

For a body composed of a finite number of elastic subbodies, 
these integrals may be replaced by finite summations. 

If rotation is required, Pn may be replaced by mn, which is the 
applied couple at a point in question. 
 
THREE MOMENT EQUATION 
 
The three moment equation gives us the relation between the 
moments between any three points in a beam and their relative 



vertical distances or deviations. This method is widely used in 
finding the reactions in a continuous beam. 
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From proportions between similar triangles: 
 

h1- tA/B

L1
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L2
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Substitute tA/B & tC/B to Eq. (1): 
 
 1

6E1I1
 �6A1a�1

L1
 + MAL1+ 2MBL1� 

 
 + 1

6E2I2
 �6A2b�2

L2
 + 2MBL2+ MCL2�= h1

L1
 + h2

L2
 

 
Simplify 
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If E is constant this equation becomes, 
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 + 2MB �
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L2
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If E and I are constant then,  
 

MAL1 + 2MB(L1 + L2) + MCL2 
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6A1a�1
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6A2b�2
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 = 6EI �
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 + 
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Values of   6Aa�
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  and   6Ab�
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  of Common Loadings: 
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CONJUGATE BEAM METHOD 
 
Conjugate beam method determines the slope and deflections of 
a real beam by calculating the shears and moments of a fictitious 
beam called the conjugate beam loaded with the M/EI diagram. 
 

w (N/m) 

L 

w (N/m) 

L 

b a 
M 

L 



Slope on real beam = Shear on conjugate beam 
Deflection on real beam = Moment on conjugate beam 

 
 
Properties of Conjugate Beam 
 

1. The length of a conjugate beam is always equal to the 
length of the actual beam. 

2. The load on the conjugate beam is the M/EI diagram of 
the loads on the actual beam. 

3. A simple support for the real beam remains simple 
support for the conjugate beam. 

4. A fixed end for the real beam becomes free end for 
conjugate beam. 

5. The point of zero shear for the conjugate beam 
corresponds to a point of zero slope for the real beam. 

6. The point of maximum moment for the conjugate beam 
corresponds to a point of maximum deflection for the 
real beam. 

 
  Real Beam    Conjugate Beam 
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Rotation 8 
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Equilibrium of Conjugate Beams 
 
Conjugate beams are always statically determinate; hence the 
reactions, moments and shears of the conjugate beam are easily 
computed by statics. In some instances, the conjugate may 
appear to be unstable due to missing reactions (as for a fixed 
ended beam), but it can be observed that the positive and 
negative areas of the M/EI diagrams due to the actual loads 
balances the conjugate beam. 
 
Example 
Deflection of cantilever beam 
With concentrated load at the 
Free end. 
 
θB = Vb= R = 1/2 (L)(-PL/EI) 

θB = -
PL2

2EI
 

δB = Mb = 1/2 (L)(-PL/EI)(2L/3) 

δB = -
PL3

3EI
 

 
 
 
 
 
 
VIRTUAL WORK METHOD 
 
Deflection and rotation at any point on a beam, truss, or frame 
can be obtained using Virtual work method. 
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Virtual Work Equation for Beams and Frames 
 
The deflection in any direction at a point on a beam or frame can 
be obtained by applying a unit load at that point and applying the 
formula 
 

δn = �
Mmndx

E I

L

0
 

 
Where M is the bending moment at the element under 
consideration due to applied loadings, and mn is the bending 
moment due to unit load applied at the point where the deflection 
is required. 
 
If the rotation at a point is required, apply a unit couple at a point 
and use the equation 
 

θ = �
Mmndx

E I

L

0
 

 
Where M is the bending moment at the element under 
consideration due to applied loadings, and mn is the bending 
moment due by the unit couple applied at the point where the 
rotation is required. 
 
Virtual Work Equation Due to Temperature Change 
 
The virtual work equation due to temperature change is:  
 

δ = u α (∆T)L 
 



Where u is the stress in the member due to unit load, α is the 
coefficient of thermal expansion of the member, and ΔT is the 
temperature change. 
 
Virtual Work for Trusses 
 
The virtual work for trusses is:  
 

δ =�
SUL
AE

 
 
Where S the stress in a member due to actual loads, L is the 
length of the member, A is the cross – sectional of the member, 
E is the modulus of elasticity, and U is the stress in the member 
due to the virtual unit load. 
 
INDETERMINATE BEAMS 
 
As discussed in the previous section, indeterminate beams are 
those beams in which the number of reactions exceeds the 
number of equation in static equilibrium. The degree of 
indeterminacy is the difference between the number of reactions 
(forces and moments) to the number of equations in static 
equilibrium. 
 

Degree = Number of reactions – Number of equilibrium 
equations 

 
In such a case, it is necessary to supplement the equilibrium 
equations with additional equations arising from the deformation 
of the beam. 
 
 



Stability and Determinacy of Structures 
 
In general, structures may be stable or unstable. If a structure is 
stable, it may be determinate or indeterminate. 
For a coplanar structure there are at least three equations of 
equilibrium that can be made (∑Fv= 0, ∑FH= 0, &∑M= 0). An 
additional equation is made for every internal hinge present due 
to fact that the moment at this point is zero. 
Reactions and Equations 

• A hinge support has two (2) support, 
• A roller support has one reaction, 
• A fixed (fully restrained) support has three (3) 

reactions, 
• There are at least three (3) equations in every 

structure, 
• An internal hinge provides one additional equation. 

 
Stability of Structures 
 
A structure is geometrically unstable if there are fewer reactive 
forces than equations of equilibrium; or if there are enough 
reactions, instability occurs if the lines of action of these forces 
intersect at a common point. 
 
Determinacy of Structure 
 
A structure is statically determinate if the number of equations 
equals the number of external reactions. If the number of external 
reactions exceeds the number of equations, the structure 
becomes statically indeterminate. 
 
The degree of determinacy is the difference between the number 
of reactions and the number of equations that can be made. 



 
Degree of indeterminacy = Number of reactions – Number  

of equations 
 
 

Types of Indeterminate Beams 
 
There are several types of indeterminate structure exist in 
practice. The following diagrams will illustrate the nature of 
indeterminate beams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure (a) is called propped beam or supported cantilever having 
three unknowns R1, R2, H and M. This is indeterminate to the first 
degree. 
 
Figure (b) is fixed at one end and has a flexible spring like support 
at the other end. In the case of a simple linear spring, the flexible 

R2 R1 

M Figure (a) 

R1 

M Figure (b) 

R2 R1 

M2 M1 

Figure (c) 

R1 R2 R3 

Figure (d) 



support exerts a force proportional to the beam deflection at that 
point. 
 
Figure (c) is fixed or clamped at both ends and is a perfectly 
restrained beam. This beam is indeterminate to the third degree. 
 
Figure (d) has six unknown reaction. This type of beam that rests 
on more than two supports is called a continuous beam. This 
beam can be solved using the three – moment equation or 
moment distribution method. 
 
 
THE THREE – MOMENT EQUATION 
 
The three – moment equation is an effective equation in solving 
continuous beams. In that equation, the three supports of a 
continuous beam may be selected as the three points A, B, and 
C. If these supports are rigid, the values of h1 and h2 is zero. With 
E and I constant, the equation may be written in the form.  
 

MAL1 + 2MB(L1 + L2) + MCL2 + 
6A1a�1

L1
 + 

6A2b�2

L2
 = 0 

 
The values of 6Aa�/L and 6Ab�/L are as given in table. 
 
For the beam shown in Figure (d), the moments MA and MC are 
zero thus there is only one unknown, MB. Using three – moment 
equation with A, B, and C as the three points, the moment MB can 
found easily. 
 
For the beam shown below, there are three unknown moments 
(MA, MB, & MC) since MD is zero. Three equations will therefore 
be needed to solve the beam. One equation can be obtained by 



taking points A-B-C, a second equation is by taking points B-C-
D. The third equation can be obtained by extending an imaginary 
beam beyond the restrained end A, and taking points O-A-B, with 
all terms that refer to the imaginary span have zero values. Thus 
for beams with restrained ends, extend an imaginary beam to 
complete the necessary equations. 
 
 
 
 
 
 
 
 
Note: the need to use this imaginary span will only arise if there 
are fixed end. 
 
 
MOMENT DISTRIBUTION METHOD 
 
Moment distribution is based on a method of successive 
approximations popularized by Hardy Cross. This method is 
applicable to all types of rigid frame analysis. 
 
 
Carry – Over Moment 
 
Carry – over moment is defined as the moment induced at the 
fixed end of a beam by the action of a moment applied at the other 
end. Consider the beam shown. When a moment is applied at B 
and flexes the beam it induces a wall moment MA. 
 
 

B L1 L2 L3 C D 

Imaginary Beam 

Lo 
A 



 
 
 
 
 
 
 
 
 
 
 
 
 
Since the deviation of B from the tangent through A is zero then, 
 

EI tB/A=(Area)AB x�B 
 

0= �
1
2

 MA L� (2L/3)+ �
1
2

 MB L� (L/3) 
 

MA= -
1
2

 MB 
 

Therefore, the moment applied at B carries over to the fixed end 
A, a moment that is half the amount and opposite sign. 
 
Beam Stiffness 
 
Beam stiffness is the moment required by the simply supported 
end of a beam to produce a unit rotation of that end, the other end 
being rigidly fixed. 
 

MA 
MB 

L 

MA MB 

θ 

L 

Carry – Over moment and beam stiffness 



From the beam shown in page 25, the rotation of B relative to the 
tangent through A is 
 

E I θ = (Area)AB   
 

E I θ = 1
2

 MA L+ 1
2
 MB L  

 

but          MA= -
1
2

 MB 
 

                                                           E I θ = 
1
2

 �-
1
2

 MB�  L+ 
1
2

 MB L 
 

                        MB= 4E I θ /L 
 
When θ equals 1 radian, MB is called as the beam stiffness and it 
varies with the ratio I/L and E. Beam stiffness is denoted as K and 
hence, 
 

Absolute K= 
4 E I

L
 

 
In many structures, the value of E remains constant and only a 
relative measure of resistance is required. The relative beam 
stiffness is 
 

Relative K= 
I
L

 
 
If I is not specified, it is convenient to take I as the common 
multiple of the span lengths. 
 



Fixed – End Moments (FEM) 
 
In the moment distribution method, we first assume the individual 
spans to be fully restrained at both ends, then we compute the 
fixed end moments. As a rule of sign counterclockwise 
moments acting on the beam (clockwise reaction) are 
considered positive, and clockwise moments acting on the 
beam (counterclockwise reaction) are considered negative. 
For beams with vertical downward loads only, negative moment 
occurs at the left end and positive moment at the right end. 
 
The following are the fixed end moments for common types of 
loading to be used with moment distribution. 
 
 
 
 

FEMAB = Pab2
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FEMBA = + Pba2
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8
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FEMAB = - wL2
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FEMBA = + wL2
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FEMAB = - 5wL2
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FEMBA = + wL2
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FEMBA = + Ma

L
 �3b

L
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FEMAB = - 6 E I ∆

L2   
 
FEMBA = - 6 E I ∆

L2   
 
 
Distribution Factor, DF 
 
In a continuous beam, the moments between any two adjacent 
spans are generally not equal. The unbalanced moment must be 
distributed to the other end of each span. The ratio of distribution 
to any beam is called the distribution factor, DF and is defined by, 
 

DF= 
K
∑K

 

 
At fixed – end, DF = 0 

At hinged or roller end, DF = 1 
 

where K is the stiffness factor and ∑K is the sum of the stiffness 
factors for adjacent beams. Ff the beams are of the same 
material, only relative K need be used. 
 
Steps of using moment distribution method: 

1. Assume that all supports are fixed or locked and 
compute the fixed end moments. 

B 
A 

L 

Δ 



2. Unlock each support and distribute the unbalance 
moment at each one to each adjacent span using the 
distribution factor DF. 

3. After distribution, carry – over one – half of the moment 
in step 2 with the same sign, to the other end of each 
span. 

4. Repeat steps 2 and 3 until the carry – over moment 
becomes distributing the rest of the moments. 

 
Hint: For faster distribution, first distribute the joints with large 
unbalanced moment (especially those hinge or roller end), and 
carry – over the moment to the interior support, then begin 
distributing the rest of the moments. 
 
Modified K 
 
For continuous beams with hinge or roller ends, the final moment 
at that end is zero. The distribution of moment will become easier 
if we multiply the beam stiffness K of the span containing that 
support by ¾, which would eliminate any further distribution of 
moment on that support. Do not apply this for fixed support. 
 
 
SLOPE – DEFLECTION METHOD 
 
The slope – deflection method was introduced by George A. 
Maney of the University of Minnesota in the year 1915. In this 
method, the moment at the end of each member is  expressed in 
terms of the (a) fixed – end moment due to external loads, (b) the 
rotation of the tangent at the end of each elastic curve, and (c) 
the rotation of the chord joining the ends of the elastic curve. 
 
 



Slope – Deflection Equation 
 
 
 
 
 
 
 
 
 
 
 
 
 
With reference to the figure shown above.  
 

MAB= FEMBA + K  (2θA + θB - 3α) 
 

MBA= FEMBA + K  (θA + 2θB - 3α) 
 

α= ∆ / L 
 

Absolute K=
2EI
L

;      Relative K= I / L 
 
 
If A and B are points of support such that Δ = 0, the equation 
becomes:  
 

MAB = FEMAB + K  (2θA + θB) 
 

MBA = FEMBA + K  (θA + 2θB) 
 

θB 

α 

FEMBA 

MBA 

MAB 

B 

A 

L 

θA 

FEMAB 

Δ 

α = Δ/L 



The sign of the fixed end moments is the same as that used in 
the moment distribution method. 
 
In general, the slope – deflection equation can be expressed as:  
 

MN = FEMN + K  (2θN + θF - 3α) 
 
 
Where: 
 MN= internal moment in the near end of the span 
 FEMN = fixed – end moment at the near end support 

θN, θF = near – and far – end slopes of the span at 
support 

 
 
Application of Slope – Deflection Equations to Continuous 
Beams. 
 
 
 
 
 
 
 
Each member of the beam is considered individually and fixed – 
end moments are computed. One equation for moment is 
computed at each end of the member. For the continuous beam 
shown, for span AB, equations for MAB and MBA are written; for 
span BC, equations for MBC and MCB are written, and so on. All 
these moment equation are expressed in terms of the unknown 
values of θ at the supports. The unknown θ can be solved by the 
following support conditions. 
 

B 
L1 L2 L3 C D 

A 



1. The rotation θ is 0 for fixed ends, such as θA in the 
beam shown above. 

2. The moment M is zero at simple ends of the beam such 
MD in the beam shown above. 

3. The sum of two moment at an interior support must be 
zero, i.e.. 

 
MBA + MBC = 0 

 
MCB + MCD = 0 

 
SIMPLE AND CANTILEVER BEAM FORMULAS 
 

Mmax = Mmid = wL2
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EIy = wx
960L
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PROPPED BEAM FORMULAS 
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FULLY RESTRAINED BEAM FORMULAS 
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P = y dx 
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Any loading 

L - x x 



For varying load, y = f(x) 
For uniform load, y = w (N/m) = constant 
 
INFLUENCE LINES 
 
Influence line shows graphically how the movement of a unit load 
across a structure influences some functions of a structure such 
as reactions, shears, moments, forces, and deflections. 
 
Influence lines may be defined as a diagram whose ordinates 
show the magnitude and character of some function of a structure 
as a unit load moves across the structure. Each ordinate of the 
diagram gives the values of the function when the load is at that 
point. 
 
Influence diagram is very useful for moving loads. It is used to 
determine where to place the loads to cause maximum values of 
a function and then compute those values. 
 
Properties of Influence Line 
 

1. The value of a function due to a single concentrated 
moving load equals the magnitude of the load 
multiplied by the ordinate of the influence diagram. 
 
 
 
 
 
 
 
 
 

P 

h 



 
 

Function = P x h 
 

2. The value of a function due to several concentrated 
moving loads equals the algebraic sum of the effects of 
each load described in property number 1 

 
 
 
 
 
 
 
 
 
 
 

 
Function = P1 h1 + P2 h2 + P3 h3 + … 

 
 

3. The value of a function due to a uniformly distribute 
load (w N/m) equals the product of w and the area of 
the influence line under the uniform load. 
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Function = w x Area 

 
 

APPROXIMATE ANALYSIS OF STRUCTURES 
 
Cantilever Method 
 
 Assumptions: 

1. A point of inflection occurs at the midspan of each 
girder. 

2. A point of inflection occurs at midheight of each 
column. 

3. The axial force in each column is directly 
proportional to its distance from the center of 
gravity of all columns on the level. 

 
Portal Method 
 
 Assumptions: 

1. The building frame is divided into independent 
portals. 

2. A point of inflection occurs at the midspan of each 
girder. 

3. A point of inflection occurs at the midheight of 
each column. 

4. The horizontal shear at a given story is distributed 
among the columns such that each interior 
column resists twice as much as each exterior 
column. 
 

Note: Portal and Cantilever methods yield the same results for 
frames such as shown below. 



 
 
 
 
 
 
 
 
 
DYNAMIC (IMPACT) LOADING 
 
The deformation produced in elastic bodies by impact loads 
caused them to act as spring, although that is not their designed 
function. 
 
The spring constant of a beam can be calculated from the 
following formula:  
 

k= 
P
δ

 (N/mm or kN/mm) 
 
where δ is the deformation due to static load P. 
 
Consider the cantilever beam shown. 
 
 
 
 
 
 
 
  
 

L 

P 

δst 



Static deformation, δst = PL3

3EI
 ; k= 3EI

L3  
 
 
 
 
 
 
 
 
 
If a load P is dropped from a height of h1 the resulting deformation 
δ can be computed from:  
 

δ
δst

 = 1 + �1 + 
2h
δst

  

 
The maximum stress developed due to impact loading can be 
determined from the equation. 
 

σmax = σst �1 + �1 + 
2h
δst
�   

 
 
For a mass m dropping freely through a height h before striking a 
stop at the end of a vertical rod of length L as shown. 
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δ =  �2L
AE

 mgh  

 
 

σ =  �2AE
AL

 mgh  

 

σ =  �2E
AL

 mv2

2
  

 
where v is the velocity of the 
mass before impact. 
 
 
TRUSSES 
 
A truss is a structure composed of slender members joint together 
at their end points. These are used to support roofs and bridges. 
 
Roof Trusses 
 
Roof trusses are often used as part of a building frame. The roof 
load is transmitted to the truss at the joints by means of a series 
of purlins. The roof truss along with its supporting columns is 
termed as a bent. The space between adjacent bents is called a 
bay. 
 
Types of Roof Trusses 

• Howe Truss 
• Pratt Truss 
• Fink Truss 
• Scissors Truss 

L 

m 

h 

δ 

 
stop 



• Fan Truss 
• Warren Truss 
• Bowstring Truss 
• Three – Hinged Arc 

 
 

DETERMINACY OF TRUSSES 
 
In any truss analysis problem, the numbers of unknowns includes 
the forces in b members and the number of external reaction r, 
making the number of unknown b + r. Since the truss members 
are all straight axial force members lying in the same plane, the 
force system acting at each joint are coplanar and concurrent, 
making the moment at each joint equal to zero. Thus, in each joint 
only two equation (∑Fx = 0 & ∑Fy = 0) are left to be satisfied. If 
there is j number of joints, the number of equations that can be 
made is 2j. 
 
Therefore; 
 
 If (b + r) = 2j, the truss is statically determinate 
 

If (b + r) > 2j, the truss is statically indeterminate to the 
(b + r) - 2j degree 
 
If (b + r) < 2j, the truss is internally unstable 

 
Where: 
 
 b = number of bars (or members) 

r = number of external reactions (2 for each hinge or  
pin and 1 for each roller or rocker) 

j = number of joints 



DEFLECTION OF TRUSSES 
 
The deflection of truss at a joint is given as: 
 
 

Deflection, δ=�
SUL
AE

 
 
 
Where S the stress in a member due to actual loads, L is the 
length of the member, A is the cross – sectional of the member, 
E is the modulus of elasticity, and U is the stress in the member 
due to the virtual unit load. 
 



REINFORCED CONCRETE DESIGN 
 
BASIC REQUIREMENTS 
 
DEFINITIONS 
 
The following terms are defined for general use in this chapter. 
Specialized definitions appear in individual Chapters of 
Sections. 
 
Admixture – Material other than water, aggregate, or hydraulic 
cement, used as an ingredient of concrete and added to 
concrete before or during its mixing to modify its properties. 
 
Aggregate – Granular materials, such as sand, gravel, crushed 
stone, and iron blast-furnace slag, used with a cementing 
medium to form a hydraulic cement concrete or mortar. 
 
Aggregate lightweight – Aggregate with a dry, loose weight of 
1100 kg/m3 or less. 
 
Anchorage – In post-tensioning a device used to anchor tendon 
to concrete member, in pretensioning, a device used to anchor 
tendon during hardening of concrete. 
 
Bonded tendon – Prestressing tendon that is bonded to 
concrete either directly or through grouting. 
 
Column – Member with a ratio of height-to-least-lateral 



dimension of 3 or greater used primarily to support axial 
compressive load. 
 
Composite concrete flexural members – Concrete flexural 
members of precast and/or cast-in-place concrete elements 
constructed in separate placements but so interconnected that 
all elements respond to loads as a unit. 
 
Concrete – Mixture of Portland cement or any other hydraulic 
cement, fine aggregate, coarse aggregate, and water, with or 
without admixture 
 
Concrete, specified compressive strength of, (f’c) – 
Compressive strength of concrete used in design expressed in 
megapascals (MPa). Whenever the quantity f'c is under a radical 
sign, square root of numerical value only is intended, and result 
has units of megapascals (MPa). 
  
Concrete structural lightweight – Concrete containing 
lightweight aggregate and has an air-dry unit weight not 
exceeding 1900 kg/m3. Lightweight concrete without natural 
sand is termed all-light weight concrete and lightweight concrete 
in which of the fine aggregate consists of normal weight sand is 
termed sand-lightweight concrete. 
 
Curvature friction – Friction resulting from bends or curves in 
the specified prestressing tendon profile. 
 
Deformed reinforcement – Deformed reinforcing bars, bar 



mats, deformed wire, welded plain wire fabric, and welded 
deformed wire fabric. 
 
Development length – Length of embedded reinforcement 
required to develop the design strength of reinforcement at a 
critical section. 
 
Effective depth of section (d) – Distance measured from 
extreme compression fiber to centroid of tension reinforcement. 
 
Effective prestress – Stress remaining in prestressing tendons 
after all losses has occurred, excluding effects of dead load and 
super imposed load. 
 
Embedment length – Length of embedded reinforcement 
provided beyond a critical section. 
  
Jacking force – In prestressed concrete, temporary force 
exerted by the device that introduces tension into prestressing 
tendons. 
 
Load, dead DL – Dead weight supported by a member. 
 
Load, factored – Load multiplied by appropriate by appropriate 
load factors, used to proportion members by the strength design 
method. 
 
Modulus of elasticity – Ratio of normal stress to corresponding 
strain for tensile of compressive stresses below proportional 



limit of material. 
  
Modulus, apparent (concrete) – Also known as long-term 
modulus, is determined by using the stress and strains obtained 
after the load has been applied for a certain length of time. 
   
Modulus, initial (concrete) – The slope of the stress-strain 
diagram at the origin of the curve. 
 
Modulus, secant (concrete) – The slope of the line drawn from 
the origin to a point on the curve somewhere between 25% and 
50% of its ultimate compressive strength. 
  
Modulus, tangent (concrete) – The slope of a tangent to the 
curve at some point along the curve. 
  
Pedestal – Upright compression member with a ratio of 
unsupported height to average least lateral dimensions of less 
than 3. 
 
Plain concrete – Concrete that does not conform to definition of 
reinforced concrete. 
 
Plain reinforcement – Reinforcement that does not conform to 
definition of deformed reinforcement. 
 
Post-tensioning – Method of prestressing in which tendons are 
tensioned after concrete has hardened. 
 



Precast concrete – Plain or reinforced concrete element cast 
elsewhere than its final position in the structure. 
 
Prestressed concrete – Reinforced concrete in which internal 
stresses have been introduced to reduce potential tensile 
stresses in concrete resulting from loads. 
 
Pretensioning – Method of prestressing in which tendons are 
tensioned before concrete is placed. 
 
Reinforced concrete – Concrete reinforced with no less than 
the minimum amount required by this chapter, prestressed or 
nonprestressed, and designed on the assumption that the two 
materials act together in resisting forces. 
 
Spiral reinforcement – Continuously wound reinforcement in 
the form of a cylindrical helix. 
 
Stirrup – Reinforcement used to resist shear and torsion 
stresses in a structural member: typically bars, wires or welded 
wire fabric (smooth or deformed) either single leg or bent into L, 
U, or rectangular shapes and located perpendicular to or at an 
angle to longitudinal reinforcement, (The term “stirrups” is 
usually applied to lateral reinforcement in flexural members and 
the term “ties” to those in compression members.) See also Tie. 
 
Strength, design – Nominal strength multiplied by a strength 
reduction factor, Ø 
 



Strength, nominal – Strength of a member or cross-section 
before application of any strength reduction factors. 
 
Strength, required – Strength of a member or cross-section 
required to resist factored loads or related internal moments and 
forces in such combinations. 
 
Tendon – Steel element such as wire, cable, bar, rod, or strand, 
or a bundle of such elements, used to impart prestresses to 
concrete. 
 
Tie – Loop of reinforcing bar or wire enclosing longitudinal 
reinforcement. See also stirrup. 
  
Transfer – Act of transferring stress in prestressing tendons 
from jacks or pretensioning bed to concrete member. 
 
Wall – Member, usually vertical, used to enclose or separate 
spaces. 
 
Wobble friction – In prestressed concrete, friction caused by 
unintended deviation of prestressing sheath or duct from its 
specified profile. 
 
Yield strength – Specified minimum yield strength or yield point 
of reinforcement in MPa. 
 
 
 



Modulus of Elasticity 
 
Unlike steel and other materials, concrete has no definite 
modulus of elasticity. Its value is dependent on the 
characteristics of cement and aggregates used, age of concrete 
and strengths. 
According to NSCP (Section 5.8.5), modulus of elasticity Ec for 
concrete for values of wc between 1500 and 2500 kg/m3 may be 
taken as  
   

Ec = wc
1.5 0.043 �fc

'   (in MPa)   Eq. 2 – 1 

 
Where f'c is the 28-day compressive strength of concrete in 
MPa, wc is the unit weight on concrete in kg/m3. For normal 

weight concrete, Ec = 4700 �fc
' . Modulus of elasticity Es for 

nonprestressed reinforcement may be taken as 200, 000 MPa. 
 
Aggregates 
 
Aggregates used in concrete may be fine aggregates (usually 
sand) and coarse aggregates (usually gravel or crushed stone). 
Fine aggregates are those that passes through a No.4 sieve 
(about 6 mm in size). Materials retained are coarse aggregates. 
 
The nominal maximum sizes of coarse aggregate are specified 
in Section 5.3.3 of NSCP. These are as follows: 1/5 the 
narrowest dimension between sides of forms, 1/3 the depth of 



slabs, or ¾ the minimum clear spacing between individual 
reinforcing bars or wires, bundles of bars, or prestressing 
tendons or ducts. These limitations may not be applied if, in the 
judgment of the Engineer, workability and methods of 
consolidation are such that concrete can be placed without 
honeycomb or voids. 
 
Water  
 
According to Section 5.3.4, water used in mixing concrete shall 
be clean and free from injurious amount of oils, acids, alkalis, 
salts, organic materials, or other substances that may be 
deleterious to concrete or reinforcement. Mixing water for 
prestressed concrete or for concrete that will contain aluminum 
embedments, including that portion of mixing water contributed 
in the form of free moisture on aggregates shall not contain 
deleterious amounts of chloride ion. Non-potable (non-drinkable) 
water shall not be used in concrete unless the following are 
satisfied: (a) Selection of concrete proportions shall be based on 
concrete mixes using water from the same source and (b) 
mortar test cubes made with non-potable mixing water shall 
have 7-day and 28-day strengths equal to at least 90 percent of 
strengths of similar specimens made with potable water. 
 
Metal Reinforcement 
 
Metal reinforcement in concrete shall be deformed, except that 
plain reinforcement be permitted for spirals or tendons; and 
reinforcement consisting of structural steel, steel pipe, or steel 



tubing. Reinforcing bars to be welded shall be indicated in the 
drawings and welding procedure to be used shall be specified. 
PNS reinforcing bar specifications shall be supplemented to 
require a report of material properties necessary to conform to 
welding procedures specified in “Structural Welding Code – 
Reinforcing Steel” (PNS/AWS D1.4) of the American Welding 
society and/or “Welding of Reinforcing Bars” (PNS/A5-1554) of 
the Philippine National Standard. 
 
Deformed Reinforcement 
 
Deformed reinforcing bars shall conform to the standards 
specified in Section 5.3.5.3 of NSCP. Deformed reinforcing bars 
with a specified yield strength fy exceeding 415 MPa shall be 
permitted, provided fy shall be the stress corresponding to a 
strain of 0.35 percent and the bars otherwise conforms to one of 
the ASTM and PNS specifications listed in Sec. 5.3.5.3.1. 
 
Plain Reinforcement 
 
Plain bars for spiral reinforcement shall conform to the 
specification listed in Section 5.3.5.3.1 of NSCP. For wire with 
specified yield strength fy exceeding 415 MPa, fy shall be the 
stress corresponding to a strain of 0.35 percent if the yield 
strength specified in the design exceeds 415 MPa. 
 
Spacing Limits for Reinforcement 
 
According to Section 5.7.6 of NSCP, the minimum clear spacing 



between parallel bars in a layer should be db but not less than 
25 mm. Where parallel reinforcement is placed in two or more 
layers, bars in the upper layers should be placed directly above 
bars in the bottom layer with clear distance between layers not 
less than 25 mm. In spirally reinforced or tied reinforced 
compression members, clear distance between longitudinal bars 
shall not be less than 1.5db nor 40 mm. 
 
In walls and slabs other than concrete joist construction, primary 
flexural reinforcement shall be spaced not farther apart than 
three times the wall or slab thickness, or 450 mm. 
 
Bundled Bars 
 
Groups of parallel reinforcing bars bundled in contact to act as a 
unit shall be limited to four in any one bundle. Bundled bars 
shall be enclosed within stirrups or ties and bars larger than 32 
mm shall not be bundled in beams. The individual bars within a 
bundle terminated within the span of flexural members should 
terminate at different points with at least 40db stagger. Since 
spacing limitations and minimum concrete cover of most 
members are based on a single bar diameter db, bundled bars 
shall be treated as a single bar of a diameter derived from the 
equivalent total area. 
 
 
 

Figure 2 – 1: Bundled-bar arrangement 
 



Diameter of single bar equivalent to bundled bars according to 
NSCP to be used for spacing limitation and concrete cover. 
 
 
                                           =   
              
                      3 – 25 mm     equivalent diameter, D 

π
4

 (25)2 × 3 = 
π
4

 (D)2 ; D = 43.3 mm 

Figure 2 – 2: Equivalent single bar 
 

Concrete Protection for Reinforcement 
 
Steel reinforcement in concrete should be provided with 
adequate covering as provided in Section 5.7.7 of NSCP. These 
covering depend on the type of exposure of the member and fire 
protection. Some of these values are; for concrete cast and 
permanently exposed to earth such as footings, the minimum 
concrete cover is 75 mm. For concrete members exposed to 
weather, 40 to 50 mm. For concrete not exposed to weather or 
in contact with ground, the minimum cover is 20 mm for slabs, 
walls, and joists, and 40 mm for beams and columns. 
 
Bundled Bars 
 
For bundled bars, the minimum concrete cover shall be equal to 
the equivalent diameter of the bundle, but need not be greater 
than 50 mm, except for concrete cast against and permanently 
exposed to earth, the minimum cover shall be 75 mm. 



Standard Hooks 
 
The term standard hook refers to one of the following: 
 (a) 180° bend plus 4db extension but not less than 65 
mm at free end, 
 (b) 90° bend plus 12db extension, at free end of bar, 
 (c) For stirrups and tie hooks: 
  (1) 16 mm bar and smaller, 90° bend plus 
6db extension at free end of bar, or 
  (2) 20 mm bar and 25 mm bar, 90° bend 
plus 12db extension at free end of bar, or 
  (3) 25 mm bar and smaller, 135° bend plus 
6db extension at free end of bar. 
 
Cast-in-place Concrete (nonprestressed). The following 
minimum concrete cover shall be provided for reinforcement: 
 
  Minimum cover, 

mm 
(a) Concrete east against and 

permanently exposed to earth 
75 

(b) Concrete exposed to earth or 
weather: 
20 mm through 36 mm bars 
16 mm bar, W31 or D31 wire, and 
smaller 

 
50 
40 

(c) Concrete not exposed to weather 
or in contact with ground: 

 
 



Slabs, walls, joists 
     32 mm bar and smaller 
Beams, columns 
     Primary reinforcement, ties, 
stirrups, spirals 
Shells, folded place members: 
     20 mm bar and larger 
     16 mm bar, W31 or D31 wire, 
and smaller 

 
20 
 
40 
 
20 
15 

 
Precast concrete (Manufactured Under Plant Conditions). 
The following minimum concrete shall be provided for 
reinforcement. 
 
  Minimum cover, 

mm 
(a) Concrete exposed to earth or 

weather: 
Wall panels: 
     32 mm bar or smaller 
Other members: 
     20 mm through 32 mm bars 
     16 mm bar, W31 or D31 
wire, and smaller 

 
 
20 
 
40 
30 

(b) Concrete not exposed to 
weather or in contact with 
ground 
Slabs, walls, joists: 

 
 
 
15 



     32 bar and smaller 
Beams, columns: 
 
     Primary reinforcement 
 
     Ties, stirrups, spirals 
Shells, folded plate members: 
    20 mm bar and larger 
    16 mm bar, W31 or D31 
wire, and smaller 

 
db but not less than 
15 & need not 
exceed 40 
 
10 
 
15 
10 

 
Minimum Bend Diameter 
 
The diameter of bend measured on the inside of the bar, other 
than for stirrups and ties in sizes 10 mm through 15 mm shall 
not be less than the following: (a) 6db for 10 mm or 25 mm bar, 
(b) 8db for 28 mm to 32 m bar, and (c) 10db for 36 mm bar. 
 
The inside diameter of bend of stirrups and ties shall not be less 
than 4db for 16 mm bar and smaller. For bars larger than 16 mm, 
the diameter of bend shall be in accordance with the previous 
paragraph. 
 
Storage Materials 
 
Cement and aggregates shall be stored in such manner as to 
prevent deterioration or intrusion of foreign matter. Any material 
that has deteriorated or has been contaminated shall not be 
used for concrete. 



Concrete Proportions 
 
Proportions of materials for concrete shall be established to 
provide: (a) workability and consistency to permit concrete to be 
worked readily into forms and around reinforcement under 
conditions of placement to be employed, without segregation or 
excessive bleeding, (b) resistance to special exposures, and (c) 
conformance with strength test requirements. 
 
Where different materials are to be used for different portions of 
proposed work, each combination shall be evaluated. Concrete 
proportions, including water-cement ratio, shall be established 
based on field experience and/or trial mixtures with materials to 
be employed. 
 
Loads 
 
The most important and most critical task of an engineer is the 
determination of the loads that can be applied to a structure 
during its life, and the worst possible combination of these loads 
that might occur simultaneously. Loads on a structure may be 
classified as dead loads or live loads. 
 
Dead Load 
 
Dead loads are loads of constant magnitude that remain in one 
position. This consists mainly of the weight of the structure and 
other permanent attachments to the frame. 
 



Live Load 
 
Live loads are loads that may change in magnitude and position. 
Live loads that move under their own power are called moving 
loads. Other live loads are those caused by wind, rain, 
earthquakes, soils, and temperature changes. Wind and 
earthquake loads are called lateral loads. 
 
Arrangement of Live Load 
 
Live loads may be applied only to the floor or roof under 
consideration, and the far ends of columns built integrally with 
the structure may be considered fixed. It is permitted by the 
code to assume the following arrangement of live loads: (a) 
Factored dead load on all spans with full factored live load on 
two adjacent spans, and (b) Factored dead load on all spans 
with full factored live load on alternate spans. 
 
Table 2 – 1: Uniform and Concentrated Loads (NSCP) 
 

Use of occupancy 
Uniform 
Load, 

Pa 

Concentrated 
Load, N 

Category Description   
1 Armories  7200 0 

2 
Assembly 
areas and 
auditorium 

Fixed seating 
areas 

2400 0 

Movable 4800 0 



and 
balconies 
therewith 

seating and 
other areas 
Stage areas 

and enclosed 
platforms 

6000 0 

3 

Cornices, 
marquees & 
residential 
balconies 

 3000 0 

4 Exit facilities  4800 0 

5 Garages 

General 
storage 

and/or repair 
4800  

Private 
pleasure car 

storage 
2400  

 

Use of occupancy 
Uniform 

load 
Pa 

Concentrated 
load, N 

Category Description   

6 Hospitals Wards and 
rooms 2000 4500 

7 Libraries 
Reading 
rooms 3000 4500 

Stock rooms 6000 6700 

8 Manufacturing 
Light 3600 8900 

Heavy 6000 13400 



9 Offices  2400 8900 

10 Printing plants 

Press 
rooms 7200 11200 

Composing 
and linotype 

rooms 
4800 8900 

11 Residential  2000 0 

12 Rest rooms 

Not less 
than the 

load for the 
occupancy 
with which 
they are 

associated 
but need not 

exceed 
2400 Pa 

  

13 
 

Reviewing 
stands, 

grandstands 
and bleachers 

 4800 0 

14 Roof deck 

Same as 
area served 
for the type 

of 
occupancy 

  

15 Schools Classrooms 2000 4500 
16 Sidewalks and Public 12000  



driveways access 

17 Storage 
Light 6000  

Heavy 12000  

18 Stores 
Retail 3600 8900 

Wholesale 4800 13400 

19 Low cost 
housing unit  1500 0 

 
 
Table 2 – 2: Minimum Roof Live Loads (NCSP) 

Roof slope 
Tributary Loaded Area for structural 

Member 
0 to 20 m2 21 to 60 m2 Over 60 m2 

1. Flat or rise 
less than 1 
vertical to 3 

horizontal; arch 
or dome with rise 
less 1/8 of span 

1000 Pa 800 Pa 600 Pa 

2. Rise 1 vertical 
per 3 horizontal 
to less than 1 

horizontal; Arch 
or dome with rise 

1/8 of span to 
less than 3/8 of 
span or greater. 

800 Pa 700 Pa 600 Pa 

3. Rise 1 vertical 600 Pa 600 Pa 600 Pa 



to 1 horizontal; 
Arch or dome 
with rise 3/8 of 

span or greater. 
4. Awnings, 
except cloth 

covered 
250 Pa 250 Pa 250 Pa 

5. Green 
houses, 

lathhouses and 
agricultural 
buildings 

500 Pa 500 Pa 500 Pa 

 
Use Vertical 

load Pa 
Lateral 
Load Pa Category Description 

1 Construction, 
public access 
at te site (Live 
load) 

Walkway, 
Canopy 

7200  

2 Grandstands, 
reviewing 
stands and 
bleachers (live 
load) 

Seats and 
footboards 

1750  

3 Stage 
accessories 
 

Gridirons and 
fly galleries 

3600  

Loft block 
wells 

3650 3650 



Head block 
wells and 
sheave 
beams 

3650 3650 

4 Ceiling framing Over stages 1000  
All uses 
except over 
stages 

500  

5 Partitions and 
interior walls 

  250 

6 Elevators and 
dumbwaiters 
(Dead loan and 
Live load) 

 2 by total 
loads 

 

7 Mechanical and 
electrical 
equipment 

 Total 
load 

 

8 Cranes (Dead 
and live load) 

Total load 
including 
impact 
increase 

1.25 by 
total load 

0.10 by 
total load 

9 Balcony 
railings, 
guardrails and 
handrails 

Exit facilities 
serving an 
occupant load 
greater than 
50 

 750 

other  300 
10 Storage racks Over 2.4 m Total  



loads 
Refer to Chapter 2 of NSCP 
 
Load Factors 
 
 Dead load, DL…………………………. 1.4 
 Live load, LL ………………...………… 1.7 
 Wind load …………………..…………. 1.7 
 Earthquake, E …………………………. 1.87 
 Earth or water pressure, H…………… 1.7 
 
Required Strength (Factored load), U 
 
Structure and structural members should be designed to have 
design strengths at all sections at least equal to required 
strengths calculated for the factored loads and forces in any 
combination of loads. 
 

 The required strength U to resist dead load DL and 
live load LL is  
 

𝑈𝑈 = 1.4𝐷𝐷𝐷𝐷 + 1.7𝐷𝐷𝐷𝐷 Eq. 2-2 
  
 

 If resistance to structural effects of a specified wind 
load W are included in the design where load 
combinations includes both full value and zero value 
of LL to determinate the more severe condition, 

 



 
𝑈𝑈 = 0.75(1.4𝐷𝐷𝐷𝐷 + 1.7𝐷𝐷𝐷𝐷 + 1.7𝑊𝑊) Eq. 2-3 

  And    𝑈𝑈 = 0.9𝐷𝐷𝐷𝐷 + 1.3𝑊𝑊              Eq. 2-4 
 But not less than 1.4DL + 1.77LL          Eq. 2-5 

 
 

 If resistance to specified earthquake loads or forces E 
are included in the design 
 

     U = 0.75 (1.4DL + 1.7LL + 1.87E)          Eq. 2 – 6  
And U = 0.9DL + 1.43E                             Eq. 2 – 7 
but not less than 1.4DL + 1.7LL             Eq. 2 – 8 

 
 

 if resistance to earth pressure H is include in design 
 

U = 1.4DL + 1.7LL + 1.7H            Eq. 2 – 9 
 
Where DL or LL reduce the effect of H 
 
U = 0.90 DL                                  Eq. 2 – 10  
but not less than 1.4DL + 1.7LL 

 
 
 If resistance to loadings due to weight and pressure of 

fluids with well-defined densities and controllable 
maximum heights F is included in design, such 
loading shall have a load factor of 1.4 and be added 
to all loading combinations that include live load; 



 If resistance to impact effects is taken into account in 
design, such effects shall be included with live load 
LL. 

 Where structural effects T of differential settlement, 
creep, shrinkage, or temperature change are 
significant in design 

 
U = 0.75 (1.4DL + 1.4T + 1.7LL)              Eq. 2 – 11 

 
 

but required strength U shall not be less than 
 

U = 1.4(DL + T)                 Eq. 2 – 12 
 

 
Strength Reduction Factors, φ (phi) 
 
The design strength provided by a concrete member, its 
connections to other members, and its cross sections, in term of 
flexure, axial load, shear, and torsion shall be taken as the 
nominal strength multiplied by a strength reduction factor Ф 
having the following values: 
(a) Flexure without axial load ………………................... 0.90 
(b) Axial tension, and axial tension with flexure ……..… 0.90 
(c) Axial compression, and axial compression with  
 flexure: 

(1) Spiral reinforcement …………………………. 0.75 
(2) Tie reinforcement ……………………………. 0.70 

(d) Shear and torsion …………………………………….. 0.85 



(e) Bearing on concrete ………………………………….. 0.70 
 
ANALYSIS AND DESIGN OF BEAMS 
 
Notations and Symbols Used in the Book 
a = depth of equivalent stress block, mm 
As = area of tension reinforcement, mm2 
Ask = area of skin reinforcement per unit height in one side face, 
mm2/m 
b = width of compression face of member, mm 
c = distance from extreme compression fiber to neutral axis, mm 
d = distance from extreme compression fiber to centroid of 
tension reinforcement, mm 
dc = thickness of concrete cover measured from extreme tension 
fiber to center of bar or wire, mm 
Ec = modulus of elasticity of concrete, MPa 
Es = modulus of elasticity of steel = 200, 000 MPa 
f'c = specified compressive stress of concrete, MPa 
fs = calculated stress in reinforcement at service loads, MPa 
fy = specified yield strength of steel, MPa 
h = overall thickness of member, mm 
Ig = moment of inertia of gross concrete section about centroidal 
axis, neglecting reinforcement 
Ise = moment of inertia of reinforcement about centroidal axis of 
member cross-section 
Mn = nominal moment, N-mm 
Mu = factored moment at section, N-mm 
Β1 = factor defined in Section 5.10.2.7.3 
εc = strain in concrete (maximum = 0.003) 



εs = strain in steel below yield point = fs/εs 
εy =  strain in steel at yield point  = fy/εs 
ρ = ratio of tension reinforcement = As/bd 
ρb = balance steel ratio (See Section 5.10.3.2) 
Ø = strength reduction factor (See Sec. 5.9.3) 
 
Balanced Design 
 
A design so proportioned that the maximum stresses in concrete 
(with strain of 0.003) and steel (with strain of fy/εs) are reached 
simultaneously once the ultimate load is reached, causing them 
to fail  simultaneously. 
 
Underreinforced Design 
 
A design in which the steel reinforcement is lesser than what is 
required for balance condition. If the ultimate load is 
approached, the steel will begin to yield although the 
compression concrete is still understressed. If the load is further 
increased, the steel will continue to elongate, resulting in 
appreciable deflections and large visible cracks in the tensile 
concrete. Failure under this condition is ductile and will give 
warning to the user of the structure to decrease the load. 
 
Overreinforced Design 
 
A design in which the steel reinforcement is more than what is 
required for balance condition. If the beam is overreinforced, the 
steel will not yield before failure. As the load is increased, 



deflections are not noticeable although the compression 
concrete is highly stressed, and failure occurs suddenly without 
warning to the user of the structure. 
Overreinforced as well as balanced design should be avoided in 
concrete because of its brittle property, that is why the Code 
limits the tensile steel percentage (ρmax = 0.75ρb) to ensure 
underreinforced beam with ductile type of failure to give 
occupants warning before failure occurs. 
 
Assumptions in Strength Design in Flexure 
(Code Sections 5.10.2) 
 
1. Strain in reinforcement and concrete shall be assumed 
directly proportional to the distance from the neutral axis. Except 
for deep flexural members with overall depth to clear span ratio, 
h/L > 2/5 for continuous spans and h/L > 4/5 for simple spans, a 
nonlinear distribution of strain shall be considered (See Sec. 
5.10.7) 
2. Maximum usable strain at extreme concrete compression 
fiber, εc shall be assumed equal to 0.003. 
3. For fs below fy, fs shall be taken as Es x εs. For  εs > εy, fs = fy. 
4. Tensile strength of concrete shall be neglected in axial and 
flexural calculations. 
5. Relationship between compressive stress distribution and 
concrete strain may be assumed rectangular, trapezoidal, 
parabolic, or any other form that results in prediction of strength 
in substantial agreement with results of compressive tests. 
6. For rectangular distribution of stress: 
 (a) Concrete stress of 0.85f'c shall be assumed 



uniformly distributed over an equivalent  compression zone 
bounded by edges of the cross-section and a straight line 
located  parallel to the neutral axis at a distance of a = β1 c 
from the fiber of maximum  compressive strain. 
 (b) Distance c from fiber of maximum strain to the 
neutral axis shall be measured in the  direction perpendicular 
to N.A. 
  (c) Factor β1 shall be taken as 0.85 for f'c < 30 MPa 
and β1 shall be reduced continuously at a rate of 0.008 for each 
1 MPa of strength in excess of 30 MPa, but  β1 shall not be 
taken less than 0.65. i.e. 

(i) For  f'c < 30 MPa,  β1 = 0.85 
(ii) For  f'c > 30 MPa,   

β1 = 0.85 – 0.008(f'c – 30) but shall not be less than 0.65 
 
SINGLY REINFORCED BEAM 
 
 
 
 
 
 
 
 
 
 
 
                                        Stress Diagram             Strain Diagram 
 

Fy/Es 

d – a/2 

0.85 
 

C = 0.85 f’c 
  

M

T = As fv 

c 

0.003 

c 
d 

b 

N.A. 

a 



 
a = β1 c                    Eq. 2 - 13 

For f’c < 30 Mpa, β1 = 0.85 
For f’c > 30 Mpa, β1 = 0.85 – 0.008 (f’c – 30) 

but shall not be less than 0.65 
 
 
[ΣFH = 0] C = T 
      0.85 f’c a b = As fv 

 

a = As fy
0.85 f'cb

                     Eq. 2 – 14 

 
 
Multiplying both sides by d/d: 
 

a = As fy
0.85 f'cb

 × d
d 

= As

bd
 fy d

0.85 f'c
  

 
The term As

bd
 is called the ratio of steel reinforcement and is 

denoted as ρ 
 

ρ= As

bd
        Eq. 2 – 15  

  
And a = ρ fy d

0.85 f'c
       Eq. 2 – 16 

 
ω = ρ fy 

f'c
         Eq. 2 – 17 

a = ω d
0.85

         Eq. 2 – 18 



Nominal Moment Capacity: 
 
From the stress diagram in the figure above: 
 Mn = C × �d - a

2
�  =  0.85 f'c ab (d - 1

2
a) 

 
 Mn = 0.85 f'c 

ω d
0.85

 =  b (d - 1
2

ω d
0.85

) 
 

Mn = f'c  ω b d2 = (1 - 0.59ω)           Eq. 2 – 19 
 
 
Ultimate Moment Capacity: 
 
 Mu = Ф Mn (where Ф = 0.90 for flexure) 
 

Mu = Ф f'c  ω b d2 = (1 - 0.59ω)          Eq. 2 – 20 
 
 
Coefficient of Resistance 
 

Ru =  f'c  ω  = (1 - 0.59ω)       Eq. 2 – 21 
      Mu = Ф Ru  b d2          Eq. 2 – 22 
 

Solving for ω and replacing it with 
ρ fy
f'c

, yields the following 

formula for the steel ratio ρ: 
 

    ρ = 0.85 f'c
fy

 �1- �1- 2 Ru

0.85 f'c
�        Eq. 2 – 23 



Balanced Steel Ratio, 𝝆𝝆𝒃𝒃 
 
 
 
 
 
 
 
 
 
 
 
 
By ratio and proportion: 
  
c
d
= 0.003

0.003 + fy/Es
 ; Es= 200, 000  

 
c = 0.003

0.00 3 + 
fy

200, 000

 d = 600
600 + fy

 d  

 
But a = β1 c; 
 

c = a
β1

 = 
ρ fy d

0.85 f’c
β1

 = ρ f yd
0.85 f’c β1

  

 
ρ fy d

0.85 f’c β1
 = 600

600 + fy
 d   

ρb = 0.85 f’c β1 600
fy (600 + fy)

                       Eq. 2 – 24 

 

d 
c 

b 

As 

0.003 

fy/E 

0.003 

c 
d 

0.003 + fy/Es 
 

Strain diagram 



Maximum and Minimum Steel Ratio 
 
Section 5.10.3.3: For flexural members the ratio of 
reinforcement ρ provided shall not exceed 0.75 of the ratio ρb 
that would produce balanced strain conditions. 
 

ρmax= 0.75 ρb                       Eq. 2 – 25 
 
This limitation is to ensure that the steel reinforcement will yield 
first to ensure ductile failure. 
 
Section 5.10.5.1: At any section of a flexural member where 
positive reinforcement is required by analysis, the ratio ρ 
provided shall not be less than given by 1.4/fy 
 
 
 
 
The provision for minimum amount of reinforcement applies to 
beams, which for architectural and other reasons are much 
larger in cross-section than required by strength as a reinforced 
concrete section becomes less than that of the corresponding 
plain concrete section computed from its modulus of rupture. 
Failure in such a case can be quite sudden. 
 
STEPS IN DESIGNING A SINGLY REINFORCED 
RECTANGULAR BEAM FOR FLEXURE: 
 
Note: The assumptions made in steps II, V, VIII are the author's 

      ρmin = 1.4
fy

                                            Eq. 2 – 26 



recommendation based on his experience. 
 
I. Identify the values of the dead load and live load to be carried 
by the beam. (DL & LL) 
II. Approximate the weight of beam (DL) between 20% to 25% of 
(DL + LL). This weight is added to the dead load. 
III. Compute the factored load and factored moment: 
 ex., Factored Load = 1.4DL + 1.7 LL 
IV. Compute the factored moment to be resisted by the beam, 
Mu 
V. Try a value of steel ratio ρ from 0.5ρb to 0.6ρb , but must not 
be less than ρmin. This value of ρ due to rounding-off of the 
number of bars to be used, for it not to exceed the maximum ρ 
of 0.75ρb. 
 

ρb = 0.85 f’c β1 600
fy(600 + fy)

   

β1 = 0.85 f’c < 30 Mpa 
β1 = 0.85 – 0.008 (f’c – 30) f’c > 30 Mpa 
ρmin = 1.4/fy  
 

VI. Compute the value of ω, ω = 
ρ fy
f'c

 

VII. Solve for bd2: 
 
       Mu= Ф f'c ω b d2 (1 - 0.59ω) 
       bd2 = 
 
VIII. Try a ratio d/b (from d = 1.5 b to d = 2b), and solve for d. 



(round-off this value to reasonable dimension) 
 
Check also the minimum thickness in beam required by the 
Code as given in Table 2 – 4 of Page 103. 
 
After solving for d, substitute its value to Step VII, and solve for 
b. 
 
Compute the weight of the beam and compare it to the 
assumption made in Step II. 
 
IX. Solve for the required steel area and number of bars. 
 
     As= ρ b d   
 
Number of bars (diameter = D) 
 
π
4

 (D)2, number of bars = As  
 
STEPS IN COMPUTING THE REQUIRED TENSION STEEL 
AREA AS OF A BEAM WITH KNOWN MOMENT MU AND 
OTHER BEAM PROPERTIES: 
 
I. Solve for ρmax and Mu max 

 ρmax = 0.75 ρb 
 

ρmax = 0.85 f'c β1 (600)
fy (600+ fy)

= ρ   



ω = ρ fy
 fc 

 =   

 
 Mu max = Ф f'c  ω b d2 (1 - 0.59ω) 
 
If Mu < Mu max design as Singly Reinforced (Step II) 
If Mu > Mu max design as Doubly Reinforced (Step III) 
 
II. Solve for ρ: 
 Mu = Ф Ru  b d2 ; Ru =  
 

 ρ = 0.85 f'c
fy

 �1- �1- 2 Ru

0.85 f'c
� =  

 
                As= ρ b d =  
 
III. Compression reinforcement is needed. 
 
STEPS IN COMPUTING MU OF A BEAM WITH KNOWN 
TENSION STEEL AREA AS AND OTHER BEAM 
PROPERTIES:  
 
I. Solve for ρ; ρ = As

bd
   

 
II. Check if steel yields by computing ρb; 
 

 𝜌𝜌𝑏𝑏 =  0.85 f'c β1 (600)
fy (600+ fy)

  

 



If ρ < ρb steel yields, proceed to Step III 
If ρ > ρb steel does not yield, proceed to Step IV. 
 
Note: If ρ < ρmin the given As is not adequate for the beam 
dimension. 
 
 
III. ρ < ρb 

 ω = ρ fy 
f'c

 

 
                Mu = Ф f'c  ω b d2 (1 - 0.59ω) =  
 
IV. ρ > ρb 
 
 
 
 
 
 
 
 
 
 
 
 
Solve for fs form the strain diagram: 
 

0.85 f’c 

C = 0.85 f’c ab 
 

M
 

T = 
  

d – a/2 

c 

0.003 

Fy

 

c 
d 

b 

N

 

d – c 

a 



fs/Es

d - c
 = 0.003

c
 ; fs  = 600 d - c

c
   

[ΣFH = 0] T = C 
   As fv = 0.85 f’c a b; a = β1 c 
 

  As 600 d - c
c

 =  0.85 f'c (β1 c) b 
 
 600 As �d - c� = 0.85 β1 f'

c
 b c2 

 
Solve c by quadratic formula and solve for fs and a: 
 

fs  = 600 d - c
c

 ; a = β1 c   

Mu= Ф T (d - a/2) = Ф As fs (d - a/2)   
or 
Mu= Ф C (d - a/2) = Ф 0.85 f’c a b (d - a/2)   
 
Minimum Thickness of Flexural Members 
 
According to Section 5.9.5 of NSCP, minimum thickness 
stipulated in Table 2 – 4 shall apply for one-way construction not 
supporting or attached to partitions or other construction likely to 
be damaged by large deflections, unless computation of 
deflection indicates a lesser thickness can be used without 
adverse effects. 
 

 
Minimum thickness, h 

Simply One end Both ends Cantilever 



supported continuous continuous 

Member 
Members not supporting or attached to partitions or 

other construction likely to be damaged by large 
deflections 

Solid 
one-way 

slabs 
L/20 L/24 L/28 L/10 

Beams 
or 

ribbed 
one-way 

slabs 

L/16 L/18.5 L/21 L/8 

Span length L is in millimeters 
 
Values given shall be used directly for members with normal 
density concrete (wc = 2300 kg/m3) and grade 415 
reinforcement. For other conditions, the values shall be modified 
as follows: 
 (a) For structural lightweight concrete having unit 
weights in the range 1500 – 2000 kg/m3, the values shall be 
multiplied by (1.65 – 0.0005 wc) but not less than 1.09, where wc 
is the unit mass in kg/m3.  
 (b) For fy other than 415 MPa, the values shall be 
multiplied by (0.4 + fy/700). 
 
DOUBLY REINFORCED BEAM 
 
Occasionally, beams are restricted in small sizes by space or 
aesthetic requirements to such extent that the compression 



concrete should be reinforced with steel to carry compression. 
Compression reinforcement is needed to increase the moment 
capacity of a beam beyond that of a tensilely reinforced beam 
with a maximum steel percentage of 0.75ρb. Aside from these 
reactions, compression reinforcement makes beams tough and 
ductile and reduces long-time deflection of beams. 
 
Compression steel also helps the beam withstand stress 
reversals that might occur during earthquakes. Continuous 
compression bars are also helpful for positioning stirrups and 
keeping them in place during concrete placement and vibration. 
Various tests show that compression reinforcement also 
prevents the beam to collapse even if the compression concrete 
crushes especially if it is enclosed by stirrups. 
 
According to Section 5.7.10 of NSCP, compression steel in 
beams must be enclosed by lateral ties, at least 10 mm in size 
for longitudinal bars 32 mm or smaller, and at least 12 mm in 
size for 36 mm and bundled bars. Deformed wire or welded wire 
fabric of equivalent area is allowed. The spacing of these ties 
shall not exceed 16 longitudinal bar diameters, 48 tie bar or wire 
diameters, or least dimension of the compression member. 
 
Analysis of Doubly Reinforced Beam 
 
Doubly reinforced beam is analyzed by dividing the beam into 
two couples, Mu1 and Mu2 as shown in the figure. Mu1 is the 
couple due to compression concrete and the part of the tension 
steel As1, and Mu2 is the couple due to the compression steel A's 



and the other part of the tension steel area As2.  
 
 
           d’ 
 
    
  
       =          + 
 
 
 
 
 
 
 
 
Compression reinforcement is provided to ensure ductile failure 
(i.e. tension steel must yield). For this reason, therefore, the 
stress in tension steel (As) is always to fy. On the other hand, the 
stress of compression steel (A's) may either be fy or below fv. 
This stress must always be checked. 
 
If the compression steel yields, then A's = As2, otherwise A's = As2 
fy/f's where f's is the stress of compression steel and is given by 
the following equation 
 

       fs  = 600 c - d'
c

        Eq. 2 - 27 
 

a c 
A’s 

As2 

b 

Mu2 

0.003 

fs/Es 

fv/Es 

A’s 

As As1 

Mu Mu1 



According to Section 5.10.3.3 of NSCP, for members with 
compression reinforcement, the portion of ρb equalized by 
compression reinforcement need not be reduced by the 0.75 
factor. Thus, the maximum permissible As is: 
 

As max = 0.75 ρb b d + A's  f's
fy

                      Eq. 2 - 28  

 
The expression 0.75 ρb b d = As1, and A's  f's

fy
 = As2. 

 
STEPS IN COMPUTING AS AND A’S FOR DOUBLY 
REINFROCED BEAM, GIVEN MU AND OTHER BEAM 
PROPERTIES 
 
I. Solve for ρmax and Mu max 
 
 ρmax= 0.75 ρb 

 ρmax = 0.85 f’c β1 600
fy (600 + fy)

 = ρ   

 ω = ρ fy
fc

 =  

 Mu max = ϕ f'c ω b d2 (1 - 0.59ω)   
 
If Mu < Mu max design as Singly Reinforced 
       (See Page 101) 
 
If Mu > Mu max design as Doubly Reinforced (Step II) 
 
II. Solve for As1: As1 = ρmax b d 



C1
 

 
 
 
      d 
 
 
 
 
 
 
 
 
III. Solve for a and c: 
 
 [C1 = T1] 0.85 f’c a b = As1 fy : a =  
  a = β1 c: c =  
IV. Solve for Mu1, Mu2 and As2 
 Mu1 = Mu max 

 Mu1 = Mu - Mu1 
 Mu1 = Ф T2 (d – d’) = Ф As2 fy (d – d1)  
 As2 =  
V. Solve for the stress of compression steel 

fs/Es

d - c
 = 

0.003
c

  

 

                fs  = 600 d - c
c

   
 If fs > fy proceed to Step VI 
 If fs < fy proceed to Step VII 

c 

d 

c – d’ 

0.003 

Es = 200, 000 

ε's = fs/Es 

d – a/2 

0.85 f’c 

T1 = As1 fv 
 

T2 = As2 fv 
 

d – d’ 

C2 = A’s f’s 
 

       Mu                   =              Mu1                      +                     Mu2 
 
 

A’s 

As 

a 

d 

b 



 
VI. If f’s > fy then use f’s = fy (compression steel yields) 
 A’s = As2 
VII. If f’s < fy then use f’s (compression steel will not yields) 
 A’s = As2 fy/f’s 

 
STEPS IN COMPUTING MU OF A DOUBLY REINFORCED 
BEAM WITH A GIVEN AS, A’S, AND OTHER BEAM 
PROPERTIES 
 

 

 

 

 

 

 

 

 

 

 

 
I. Assume compression steel yields (f’s = fy) 
 As2 = A’s =  
 As1 = As - As2 = 
 
II. Solve for a and c: 
 
 [C1 = T1]  0.85 f’c a b = As1 fy : a =  
  a = β1 c: c = 

d – a/2 

0.85 f’c 

T1 = As1 fv 
 

T2 = As2 fv 
 

d – d’ 

C2 = A’s f’s 
 

       Mu                   =              Mu1                      +                     Mu2 
 
 

d 

a 

b 

C1 

d’ 

As 

A’s 



c 

III. Solve for the stress in compression steel 

 f's = 600 c - d'
c

 
 
               If f’s > fy, proceed to step IV 

If f’s < fy, proceed to step V 
 
IV. Since f’s > fy, compression steel yields 
 Mu = Mu1 + Mu2 = Ф T1 (d – a/2) + Ф T2 (d – d’) 
 Mu = Ф As1 fy (d – a/2) + Ф As2 fy (d – d’) 
 
V. If f’s < fy assumption is wrong, compression steel does not 
yield 
 
 
 
 
 
 
 
 
 
 
 

f's = 600 c - d'
c

  
 
From the stress diagram: 
 
 [C1 + C2 = T]   

d – a/2 

0.85 f’c 

T1 = As1 fv 
 

T2 = As2 fv 
 

d – d’ 

C2 = A’s f’s 

 



0.85 f’c a b = A’s f’s = As fy 

 

0.85 f’c β1 c b = A’s + f's = 600 c - d'
c

  = As fy 
 
Solve for c by quadratic formula 
Solve for f’s, f's = 600 c - d'

c
 =  

Solve for a, a = β1 c, c =  
Solve for Mu: 
  Mu = Mu1 + Mu2 = Ф C1 (d – a/2) + Ф C2 (d – d’) 
 Mu = Ф 0.85 f’c a b (d – a/2) + Ф A’s f’s (d – d’) 
 
DEEP BEAMS 
 
According to Section 5.10.7.1 of the Code, beams with overall 
depth to clear span ratios greater than 2/5 for continuous spans, 
or 4/5 for simple spans, shall be designed as deep flexural 
members taking into account nonlinear distribution of strain and 
lateral buckling. 
 
Beams with web depth that exceed 900 mm have a tendency to 
develop excessive wide cracks in the upper parts of their 
tension zones. According to Section 5.10.6.7 of NSCP, if the   
depth of a web exceeds 900 mm, longitudinal skin reinforcement 
shall be uniformly distributed along both side faces of the 
member for a distance d/2 nearest the flexural tension 
reinforcement. The area of skin reinforcement Ask per meter of 
height on each side face shall be  

Ask > 1.016 (d – 750) 



 
The maximum spacing of the skin reinforcement shall not 
exceed the lesser of d/b and 300 mm. Such reinforcement may 
be included in strength computations if a strain compatibility 
analysis is made to determine stresses in the individual bars or 
wires. The total area of longitudinal skin reinforcement in both 
faces need not exceed one-half of the required flexural tensile 
reinforcement. 
 
T-Beams 
 
Reinforced concrete floors usually consist of slabs and beams, 
which are placed or poured monolithically. In this effect, the 
beam will have an extra width at the top (which is usually under 
compression) called flanges, and the resulting section is called a 
T-beam. The beam may also be L-shaped if it is located at the 
end of a slab. 
 
Analysis and Design of T-Beams 
 
The compression block of a T-beam can fall either within the 
flange only or partly in the web. If it falls within the flange as 
shown in Figure (a), the rectangular beam formulas (in chapter 
2) apply since the concrete below neutral axis is assumed to be 
cracked and its shape has no effect on the flexure calculations 
(other than weight). If however it covers the web as shown in 
Figure (b), the compression concrete no longer consist of a 
single rectangle and thus the rectangular beam formulas do not 
apply. 



N.A 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                                       (b) 
 

Figure 2 – 3: Location of neutral axis 
 
Tension Steel Stress 
In analysis of beams (whatever shape it is),  
once the value of c is known, the actual stress  
in tension steel can be computed  
using Eq. 2 – 29. 
 
From the diagram shown 
fs/Es

d - c
= 0.003

c
= Es = 200, 000  

 
fs

200, 000
= 0.003 (d - c)

c
  

 

As 

a 

N.
 

bf 

a 

bw 

As 

bw 

bf 

t 

d 
c 

d - c 

0.003 

fs/Es 



fs= 600 d - c
c

                                 Eq. 2 – 29 
 
 
The c/d Ratio 
 
One can actually predict when steel will yield once the value of c 
is known. Note that the strain in concrete is taken as 0.003 and 
the strain in steel is fs/Es. For fy = 415 MPa, the maximum strain 
εs = 415/200, 000 = 0.0021, and for fy = 276 MPa, εs = 0.0014. 
 
 
 
 
 
 
 
 
 
 

(a)  c/d =  0.5         (b) c/d = 0.7        (c)  
 

Figure 2 – 4: Location of neutral axis 
 

As shown in Figure (a), the grade 415 steel will not yield if c/d is 
greater than 0.59 and will yield if c/d is less than 0.59. The 
grade 276 steel as shown in Figure (b) will yield if c/d is less 
than 0.7. Since the maximum steel strength commonly used in 
construction is the grade 415 (fy = 415 MPa), we can therefore 

 >0.0021 

c c = 0.7d 

d 

0.003 

c = 0.59d 

0.0021 

d 

0.003 

0.0014 

d 

0.003 



conclude that if c/d is less than 0.59, the tension steel will yield. 
 
In T – beams where the flange is in compression, the c/d ratio is 
usually that shown in Figure (c), which easily lead us to a 
conclusion that he steel yields. 
 
Balanced and Maximum Steel Area 
 
If a is less that the slab thickness t, the balanced steel ration is 
computed using the balanced ρ in Page 98. If a is greater than t, 
the following formula will be used. 
 
 From the strain diagram shown in the Figure below 
 

c
0.003

 = 
d-c

fy/Es
 ; Es = 200000 MPa 

 
 

c = 
600 d

600 + fy
 ; a = β1 c =  β1 = 

600 d
600 + fy

 

 
 

 
 
 
 
 
 
 
 
 

0.003 + fy/Es 0.003 

= d d 
c a z 

bw 

N.A
 

t 

bf 

Strain diagram in 
balanced condition 



  [T = C]                               
Asb fy = 0.85 fc [b1t + bwz] 

 
 

Asb= 
0.85 f'c [b1 t + (a-t)bw]

fy
                 Eq.2-30 

                            As  max= 0.75  Asb                                 Eq.2-31 
 

 
Note Eq. 2 – 30 apply only if a > t. 

 
 
Design of T-Beams with Negative Moments 
 
 
 
 
 
 
 
 
 
When T-beams are resisting negative moments so that their 
flanges are in tension and the bottoms of their stems are in 
compression, the formulas for rectangular beams will be 
applied. The following code requirements shall be applied for 
this case: 
 

5.10.6.6 Where flanges of T-beam construction are in 

NA 



tension, part of the flexural tension reinforcement shall 
be distributed over an effective flange width as 
defined in Sec. 5.8.10 or a width equal to 1/10 the 
span, some longitudinal reinforcement shall be 
provided in the outer portions of the flange. 

 
The intention of this section is to minimize the possibilities of 
flexural cracks that will occur at the top face of the flange due to 
negative moments. 
 
Minimum Steel Ratio for T-Beams 
 
Section 5.10.5.1 of NSCP provides that the minimum steel ratio 
be 1.4/fy. It also states that in T-beams where the web is in 
tension, the ratio ρ shall be computed for this purpose using 
width of web. 
 
In checking for maximum ρ (ρmax), use ρ = As

bf d
 

 (only if a < t) 
 
In checking for minimum ρ (ρmin), use ρ = As

bw d
 

 
Code Requirements for T-beams (Section 5.8.10) 

1. In T-beam construction, the flange and web 
shall be built integrally or otherwise 
effectively bonded together. 

2. The width of the slab effective as a T-beam 
shall not exceed ¼ of the span of the beam, 



and the effective overhanging flange on 
each side of the web shall not exceed: 

(a) 8 times the slab thickness, and 
(b) ½ the clear distance to the next web. 

3. For beams with slab on one side only, the 
effective overhanging flange shall not 
exceed: 

(a) 1/12 the span length of the beam, 
(b) 6 times the slab thickness, and 
(c) ½ the clear distance to the next web. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – 5: Effective flange width 
 
For Interior Beam 
   bf is the smallest of: 

1. bf = L/4 
2. bf = 16t + bw 

3. bf = S1/2 + S2/2 + bw 

 

t b

b
 

b
 

bbS SS

b
 



 
For End Beam 
   b’f is the smallest of: 

1. b’f = L/12 + b’w 
2. b’f = 6t + b’w 

3. b’f = S3/2 + b’w 

For symmetrical interior beam (S1 = S2 = S) 
   bf is the smallest of: 

1. bf = L/4 
2. bf = 16t + bw 

3. bf = center-to-center spacing of beams 
 

4. Isolated beams in which T-shape are used 
to provide a flange for additional 
compression area shall have a flange 
thickness not less than ½ the width of the 
web and an effective flange width not more 
than four times the width of the web.  
 

t > bw/2    
b < 4 bw 

 
 
 
 
 
 
 

5. Where primary flexural reinforcement in a 

b 

b b

t 
 

bw 



slab that is considered as a T-beam flange 
is parallel to the beam, reinforcement 
perpendicular to the beam shall be provided 
in the top of the slab in accordance with the 
following: 

(a) Transverse reinforcement shall be designed to carry the 
factored load on the overhanging slab width assumed to act as 
a cantilever. For isolated beam, the full width of the overhanging 
flange shall be considered. For other T-beams, only the effective 
overhanging slab needs to be considered. 
(b) Transverse reinforcement shall be spaced not farther apart 
than five times the slab thickness, or 450 mm. 
 
STEPS IN DETERMINING THE TENSION STEEL AREA As OF 
T – BEAM WITH KNOWN Mu AND OTHER BEAM 
PROPERTIES: 
 
I.  Assume that the entire flange is in compression and 

solve for Mu1: 
 
 Mu1 = Ф C (d – t/2) 

Mu1 = Ф 0.85 fc bf t (d – t/2) = 
       If Mu1 > Mu’ then a < t, proceed to Step II 
       If Mu1 < Mu’ then a > t, proceed to Step III 

 
II.  a < t 
 
 
 
 

T = As fv 

d – a/2 

0.85 f’c 

d 

a t 

bf 

As 

C = 0.85 f’c a b 



Solve for a: 
 
Mu = Ф C (d – a/2) 
Mu = Ф 0.85 fc ab (d – a/2); a = 
 
[T = C] = As fy = 0.85 fc ab; As = 

 
Solve for ρmax and compare with As/ bf d 
 

If As/ bf d < ρmax, design is OK 
 
If As/ bf d > ρmax, the beam needs compression steel 
(this seldom happen) 

 
Solve for ρmax = 1.4 / fy  and compare with As/ bw d 
 

If As/ bw d < ρmin, design is OK 
 
If As/ bw d > ρmin, use ρ = ρmin (this seldom happen) 
 
Use As = ρmin bw d 
 
 
 
 
 
 
 
 

 
 
 
 

t 

bf 

d 
d’ 

a 
z 

bw 

As 

Mu = Mu1 + Mu2 

T2 = As2 fy 

0.85 f’c 

Mu1  

d – t/2 

C1 
0.85 f’c 

T1 = As1 fy 

C2 

d – z/2 

Mu2  



Where Mu1 = the same value in Step 1 
 
Mu2 = Mu  - Mu1 = 
 Mu2 = Ф C (d – z/2) 
 Mu2 = Ф 0.85 fc bw z (d’ – z/2) 
 z =  
 
[T = C] 
 As fy = C1 +  C2 

As fy = 0.85 fc b t  +  0.85 fc bw z 
As = 

 
Solve for ρmax = 1.4 / fy  and compare with As/ bw d 
 

If As/ bw d > ρmin, design is OK 
 
If As/ bw d < ρmin, use ρ = ρmin (this seldom happen) 
 
Use As = ρmin bw d 

 
Solve for As max: 
  
 a = β1 (600d/ fy + 600) 
 

 As max = 0.75 Asb = 0.75 0.85 f'c �b1t + �a - t�bw�
fy

 

 
 If As < As max, value is OK 

If As > As max, the beam needs compression steel (this 
seldom happens to T-beam) 
 
 
 



STEPS IN DETERMINING MU OF A T-BEAM WITH GIVEN AS 
AND OTHER BEAM PROPERTIES: 
 
I. With tension steel yielding (fs = fy), compute the area of 
compression concrete, Ac. 
 
[C = T] 0.85 f’c Ac = As fy ; Ac =  
 
 Area of compression flange, Af = bf t 
 If Ac < Af, a < t, proceed to Step II 
 If Ac > Af, a > t, proceed to Step III 
 
II. a < t 
 
 
 
 
 
 
 
 
Solve for a: 
 Ac = bf x a; a =  
 
Mu = Φ T (d – a/2) 
Mu = Φ As fy (d – a/2) 
 
Verify if steel yields (this may not be necessary anymore) 
 

T = As fv 

d – a/2 

0.85 f’c 

d 

a t 

bf 

As 

C = 0.85 f’c a b 



 c = a/β1 

 

 fs = 600(d - c) 
c

=  
 
 If fs > fy, steel yields (assumption is correct) 
 If fs < fy, steel does not yield (this seldom happen) 
 
III. a > t 
 
 
 
 
 
 
 
 
 
 
 
Solve for z: 
 Ac = Af + bw z (See Step I for the values of Ac and Af 
 z =  
 
 
Verify if steel yields 
 
 a = t + z =  
 

t 

bf 

d 
d’ 

a 
z 

bw 

As 

Mu = Mu1 + Mu2 

T2 = As2 fy 

0.85 f’c 

Mu1  

d – t/2 

C1 
0.85 f’c 

T1 = As1 fy 

C2 

d – z/2 

Mu2  



 c = a/β1 =   fs = 600(d - c) 
c

= 
 
 If fs > fy, steel yields (assumption is correct) 
 If fs < fy, steel does not yield (this seldom happen) 
 
Mu1 = Φ C1 (d – t/2) = Φ 0.85 fc  Af (d – t/2) 
Mu2 = Φ C2 (d’ – z/2) = Φ 0.85 bw  z (d’ – z/2) 
Mu = Mu1 + Mu2 =  
 
BEAM DEFLECTION (SECTION 5.9.5) 
 
Sect. 5.9.5.2.2 Where deflections are to be computed, 
deflections that occur immediately on application of load shall be 
computed by usual methods or formulas for elastic deflections, 
considering effects of cracking and reinforcement on member 
stiffness 
 
Sect. 5.9.5.2.3 Unless stiffness values are obtained by a more 
comprehensive analysis, immediate deflection shall be 
computed with the modulus of elasticity Ec for concrete and with 
the effective moment of inertia as follows, but not greater than Ig. 
 

Ie = �Mcr

Ma
�

3
Ig+ �1- �Mcr

Ma
�

3
�  Icr                  Eq. 2 - 32 

 
Where 

 Mcr = fr Ig
yt

 

 fr = modulus of rapture of concrete, MPa, for normal 



weight concrete, fr = 0.7 �f'c  
 Ma = maximum moment in member at stage deflection 
is computed. 

Ig = moment of inertia of gross concrete section about 
centroidal axis, neglecting reinforcement. 
Icr = moment of inertia of cracked section transformed 
to concrete 
Yt = distance from centroidal axis to gross section, 
neglecting reinforcement, to extreme fiber in tension. 

 
When lightweight aggregate is used, one of the following 
modifications shall apply: 

(a) When fct is specified and concrete is 
proportioned in accordance with Sec. 5.5.2, fr 
shall be modified by substituting 1.8 fct for �f'c 
but the value of 1.8 fct shall not exceed �f'c. 

(b) When fct is not specified, fr shall be multiplied by 
0.75 for all lightweight concrete, and 0.85 for 
sand-lightweight concrete. Linear interpolation is 
permitted if partial sand replacement is used. 

 
 
Sect. 5.9.5.2.4 For continuous members, effective moment of 
inertia may be taken as average of values obtained from Eq. 2 – 
32 for the critical positive and negative moment sections. For 
prismatic members, effective moment of inertia may be taken as 
the value obtained from the Eq. 2 – 32 at midspan for simple 
and continuous spans, and at the support for cantilevers. 



 
Sect. 5.9.5.2.5 Unless values are obtained by a more 
comprehensive analysis, additional long-term deflection 
resulting from creep and shrinkage of flexural members (normal 
weight or lightweight concrete) shall be determined by 
multiplying the immediate deflection caused by the sustained 
load considered, by the factor 
 

λ= ξ
1+50ρ'

                                                  Eq. 2 - 33 
 
Where ρ' shall be the value of reinforcement ratio for non-
prestressed compression reinforcement at midspan for simple 
and continuous spans, and at support for cantilevers. It is 
permitted to assume the time-dependent factor ξ for sustained 
loads to be equal to 
 
  5 years or more …............ 2.0 
  12 months ….................... 1.4 
  6 months …...................... 1.2 
  3 months …...................... 1.0 
 
5.9.5.2.6 Deflection computed in accordance with Sec. 5.9.5.2.2 
through Sec. 5.9.5.2.5 shall not exceed limits stipulated in Table 
2 – 5 
 
 
 
 



Table 2 – 5: Maximum Permissible Computed Deflections 
 
Type of member Deflection to be 

considered 
Deflection 
limitation 

Flat roofs not 
supporting or 
attached to 
nonstructural 
elements likely to 
be damaged by 
large deflections 

Immediate 
deflection due to 
live load LL 

L/180 

Floors not 
supporting or 
attached to 
nonstructural 
elements likely to 
be damaged by 
large deflections 

Immediate 
deflection due to 
live load LL 

L/360 

Roof or floor 
construction  
supporting or 
attached to 
nonstructural 
elements likely to 
be damaged by 
large deflections 

That part of the total 
deflection occurring 
after attachment of 
nonstructural 
elements (sum of 
the long-time 
deflection due to all 
sustained loads and 
the immediate 
deflection due to 

L/480 ** 

Floors not 
supporting or 

L/240 **** 



attached to 
nonstructural 
elements likely to 
be damaged by 
large deflections 

any additional live 
load)***  

 
* Limit not intended to safeguard against ponding. 
Ponding should be checked by suitable calculations of 
deflections, including added deflections due to ponded water 
and considering long-term effects of all sustained loads, camber, 
construction tolerances, and reliability of provisions for drainage. 
** Limit may be exceeded if adequate measures are 
taken to prevent damage to supported or attached elements. 
*** Long-time deflection shall be determined in 
accordance with Sec. 5.9.5.2.5 or Sec. 5.9.5.4.2 but may be 
reduced by amount of deflection calculated to occur before 
attachment of nonstructural elements. This amount shall be 
determined on basis of accepted engineering data relating to 
time-deflection characteristics of members similar to those being 
considered. 
**** But not greater than tolerance provided for 
nonstructural elements. Limit may be exceeded if camber is 
provided so that total deflection minus camber does not exceed 
limit. 
 
NSCP COEFFICIENTS FOR CONTINUOUS BEAMS AND 
SLABS 
 
Section 5.8.3.3 of NSCP states that in lieu of frame analysis, the 



following approximate moment and shears are permitted for 
design of continuous beams and one-way slabs (slabs 
reinforced to resist flexural stresses in only one direction) 
provided: 
 (a) There are two or more spans, 
 (b) Spans are approximately equal, with the larger of 
two adjacent spans not greater than the shorter by more than 20 
percent, 
 (c) Loads are uniformly distributed, 
 (d) Unit live loads does not exceed three times unit 
dead load and 
 (e) Members are prismatic 
 
Positive moment 
   End spans 
 Discontinuous end unrestrained ………………..…. Wu 

Ln
2/11 

 Discontinuous end integral with support ……..…... Wu 
Ln

2/14 
   Interior spans ……………………………………………......... Wu 
Ln

2/16 
 
Negative moments at exterior face of first interior support 
   Two spans …………………………………………………….. Wu 
Ln

2/9 
   More than two spans ……………………………………...…. Wu 
Ln

2/10 
 
Negative moments at other faces of interior 



   Supports ………………………………………………….…... Wu 
Ln

2/11 
 
Negative moment at other face of all supports for: 
   Slabs with spans not exceeding 3 m; and beams 
   Where ratio of sum of column stiffness to beam 
   Stiffness exceeds eight at each end of the span ……….... Wu 
Ln

2/12 
 
Negative moment at interior face of exterior 
Supports for members built integrally with supports 
   Where support is a spandrel beam …………………….…. Wu 
Ln

2/24 
   When support is a beam …………………..……………….. Wu 
Ln

2/16 
 
Shear in end members at face of first interior 
su……………....1.15 wu Ln/2 
Shear at face of all other supports….......................................... 
Wu Ln/2 
Where Ln = clear span for positive moment or shear and 
average of adjacent clear spans for negative moment. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – 6: Shear and moment for continuous beam or slab 
with spans ad discontinuous end integral with support 
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Figure 2 – 7: Shear and moment for continuous beam or slab 
with more than two discontinuous end integral with support 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – 8: Shear and moment for continuous beam or slab 
with more than two discontinuous and unrestrained 
 
ONE-WAY SLAB 
 
Reinforced concrete slab are large flat plates that are supported 
at its sides by reinforced concrete beams, walls, columns, steel 
beams, or by the ground. If a slab is supported on two opposite 
sides only, they are referred to one-way slabs since the bending 
occurs in one direction only. If the slab is supported on all four 
sides, it is called two-way slab since the bending occurs in both 
direction. 

w L1/2 

Shear 

Column Column 

w L3/2 1.15 w Ln/2 

L1 L2 

w L12/11 w L22/16 

- w Ln2/10 

Ln = (L1 + L2) / 2 

Moment 

L3 

1.15 w Ln/2 

w L32/11 

- w Ln2/10 

Ln = (L2 + L3) / 2 



 
If a rectangular slab is supported in all four sides but the long 
side is two or more times the short side, the slab will, for all 
practical purposes, act as one way slab, with bending occurring 
in the short direction. 
 
A one-way slab is considered as a wide, shallow, rectangular 
beam. The reinforcing steel is usually spaced uniformly over its 
width. One-way slabs are analyzed by considering a one-meter 
strip, which is assumed independent of the adjacent strips. This 
method of analysis is somewhat conservative because we 
neglected the lateral restraint provided by the adjacent strips. 
 
 
 
 
 
 
 
 
 
 
Figure 2 – 9: One-way slabs on simple support 

 
Minimum Spacing of Reinforcement 
 
According to Section 5.7.6.5, the flexural reinforcement shall not 
be spaced farther apart than 3 times the slab thickness, nor 450 
mm. 

h 

b = 1m 



Shrinkage and Temperature Reinforcement, ρt 

 

Concrete shrinks as it hardens. In addition, temperature 
changes occur that causes expansion and contraction of 
concrete. In this effect, the code (5.7.12) requires that one-way 
slabs, where flexural reinforcement extends in one direction 
only, should be reinforced for shrinkage and temperature 
stresses perpendicular to flexural reinforcement. According to 
Section 5.7.12.2.1, the area of shrinkage reinforcement shall 
provide at least the following ratios of gross concrete area bh, 
(where h is the slab thickness) but not less than 0.0014. 
        (a) Where Grade 275 deformed bars are used ....... 0.0020 
        (b) Where Grade 415 deformed bars or welded  
              wire fabric (plain or deformed) are used …......... 0.0018 

(c) Where reinforcement with fy > 415 MPa 
measured at yield strain of 0.35% are used 
…........................... 0.0018 ×400

fy
 

Shrinkage and temperature reinforcement may not be spaced 
not farther apart than 5 times the slab thickness, or 450 mm 
(Section 5.7.12.2.2). 
 
Steps in the Design of One-Way Slabs 
 
I. Identify the uniform floor pressure (Pa) to be carried by the 
slab. These loads consist of: 
 
 1.) Live load pressure, LL (Pa) 
 2.) Dead load pressure, DL (Pa) 



 3.) Ceiling load (below the slab), DL (Pa) 
 
II. Determine the minimum slab thickness h from Table 2 – 4. If 
necessary adjust this value depending on your judgment. 
 
III. Compute the weight of the slab; weight = γconc x h, DL (Pa) 
 
IV. Calculate the factored moment (Mu) to be carried by the slab. 
 
 Factored floor pressure = 1.4DL + 1.7LL   
 Uniform load, Wu = factored pressure x 1 m 
 
V. Compute the effective depth, d: 
 
 d = h – covering (usually 20 mm) – ½ (main bar 
diameter) 
 
VI. Compute the required ρ: 
 
Solve for Ru: Mu = Ф Ru b d2    where b = 1000 mm 
 

ρ = 0.85 f'c
fy

 �1- �1- 2 Ru

0.85 f'c
�  

 
Solve for ρmax and ρmin 

 
 If ρ is less than ρmax and ρmin, use ρ 
 If ρ is greater than ρmax, increase the depth of slab to 

ensure ductile failure  



 If ρ is less than ρmin use ρ = ρmin 
VII. Compute the required main bar spacing 
 As = ρ b d = ρ (1000) d 
 
 S1= Abar

As
 ×1000 

 
Use the smallest of the following for the main bar spacing: 

(a) S1, (b) 3 x h, and (c) 450 mm 
 

VIII. Temperature bars: See page 129 for the spacing: 
 Ast = ρt b h 
 
 S2= Abar

As
 ×1000 

 
Use the smallest of the following for temperature bar spacing: 
 

(a) S2, (b) 5 x h, and (c) 450 mm 
 
SHEAR AND DIAGONAL TENSION 
 
Another type of beam failure other than bending is shear failure. 
Shear failures are very dangerous especially if it happens before 
flexure failure because they can occur without warning. To avoid 
shear failure, the Code provides permissible shear values that 
have larger safety factors compared to bending failure, thus 
ensuring ductile type of failure.  
 
 



(a) Shear failure of beam 
without stirrup or shear 
reinforcement 
 
 
 
 
 
 
 
 

(b) Shear failure of beam 
stirrup or shear  
reinforcement 
 
 

 
 
 
 
 
Without stirrup, there is nothing to stop the concrete from 
splitting due to diagonal tension as in Figure (a). Stirrups 
prevent this occurrence especially if they are closely spaced as 
in Figure (b). 
 
Basic Code Requirements  
The basic Code requirement (Sec. 5.11.1) on shear strength is 
that the factored shear forced Vu shall be equal or less than the 



design shear Ø Vn, or 
 

Vu < Ø Vn    Eq. 2 – 34  
 Vn = Vc + Vs   Eq. 2 – 35  

 
 
For a beam with no web reinforcement, the shearing force that 
causes the first diagonal cracking can be taken as the shear 
capacity of the beam. For a beam that does contain constant 
amount of shear force Vc, and the web reinforcement need only 
be designed for the shear force Vs in excess of that carried by 
the concrete, or  
 

Vs = Vn – Vc         Eq. 2 – 36  
 
The amount of shear Vc that can be carried by concrete at 
ultimate is at least equal to the amount of the shear that would 
cause diagonal cracking. The amount of shear provided by the 
reinforcement Vs is calculated using the truss analogy with a 45° 
inclination of the diagonal members. 
 
Shear Strength Provided by Concrete, Vc 

 
According to Section 5.11.3.1 the shear strength provided by 
concrete subject to shear and flexure only is: 
 
              Vc = 1

6
 �f'c bw d                                Eq. 2 – 37  

 
 



Or in more detailed calculation (Section 5.11.3.2.1)  
 
   Vc = ���f'c + 120 ρw Vu d

Mu
�÷7 �  bw d ≤ 0.3 �f'c bw d     Eq. 2 – 38  

 
Where �f'c is in MPa and shall not exceed 0.7 MPa except as 
provided by Section 5.11.1.2.1, bw is the width of web in mm, d 
is the effective depth in mm, and ρw = As/bw d. The quantity Vu 

d/Mu in Eq. 2 – 38 shall not be taken greater than 1. 
 
Types of Shear Reinforcement 
  
 According to Section 5.11.5.1 of the Code, shear reinforcement 

may consist of:  
a) Stirrups perpendicular to axis of member, and  
b) Welded wire fabric with wires located perpendicular 

to axis of member. 
 

For nonprestressed members, shear reinforcement may also 
consist of: 

a) Stirrups making an angle of 45° or more with 
longitudinal tension reinforcement, 

b) Longitudinal reinforcement with bent portion making 
an angle of 30° or more with the longitudinal tension 
reinforcement, 

c) Combinations of stirrups and bent longitudinal 
reinforcement, and  

d) Spirals. 
 
 
 



Design Yield Strength of Stirrups 
 
According the Section 5.11.5.2 the design yield strength of 
shear reinforcement shall not exceed 415 MPa. Stirrups and 
other bars or wires used as shear reinforcement shall extend to 
a distance d from extreme compression fiber and shall be 
anchored at both ends to develop the design yield strength of 
reinforcement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – 11: Types of stirrups 

     (a) Av = 2Ab          (b) Av = 2Ab                   (c) Av = 4Ab 
 

(d) Av = 2Ab                              



Spacing Limits of Shear Reinforcement, s 
 
According to Section 5.11.5.4 of the Code, the spacing s of 
shear reinforcement placed perpendicular to axis of members 
shall not exceed d/2 in nonprestressed members and (3/4)h in 
prestressed members, nor 600 mm. Inclined stirrups and bent 
longitudinal reinforcement shall be so spaced that every 45° 
line, extending toward the reaction from mid-depth of members 
d/2 to longitudinal tension reinforcement, shall be crossed by at 
least one line of shear reinforcement.  
When Vs exceed 1

3
 �f'c bw d maximum spacing given by the 

above limits shall be reduced by one-half.  
 
Minimum Shear Reinforcement  
 
According to Section 5.11.5.5 of the Code, a minimum area of 
shear reinforcement shall be provided in all reinforced concrete 
flexural members (prestressed and nonprestressed) where 
factored shear force Vu exceeds one-half the shear strength 
provided by concrete ϕVc, except: 

(a) Slabs and footings 
(b) Concrete joist construction defined by Sec. 5.8.11 
(c) Beams with total depth not greater than 250 mm, 21/2 

times thickness of flange, or 1/2 the width of web, 
whichever is greatest. 

 
This minimum shear reinforcement requirement may not be 
required if shown by test that required nominal flexural and 
shear strength can be developed when shear reinforcement is 
omitted. Such tests shall simulate effect of different settlement, 



creep, shrinkage, and temperature change, based on a realistic 
assessment of such effects occurring in service.  
 
Where shear reinforcement is required, the minimum area of 
shear reinforcement shall be computed by 
 

Av= bw s
3 fy

   Eq. 2 - 39 

 
Where bw and s are in millimeters.  
 
Shear Strength Provided by Reinforcement  
 
When factored shear Vu exceeds strength ϕVc, shear 
reinforcement shall be provided to satisfy Eq. 2-34 and Eq. 2-35. 
The shear strength provided by the stirrups is given by the 
following but shall not be taken greater 1

3
 �f'c bw d. 

(a) When shear reinforcement perpendicular to axis of 
member is used.  

 

Vs = Av fy d
s

      Eq. 2 - 40 
 
Where Av is the area of shear reinforcement within a distance s. 
 

(b) When inclined stirrups are used as shear 
reinforcement. 
 

Vs = Av fy (sin α + cos α) d 
s

  Eq. 2 - 41 



Where α is the angle between inclined stirrups and longitudinal 
axis of member. 
 

(c) When shear reinforcement consist of a single bar or a 
single group of parallel bars, all bent up at the same 
distance from the support,  

 
Vs = Av fy sin α ≤ 1

4
 �f'c bw d             Eq. 2 - 42 

 
 
 
 Critical Section for Beam Shear 
 
According to section 5.11.1.3 of NSCP, the maximum factored 
shear force Vu at supports may be computed in accordance with 
the following conditions provided that: 
(a) The support reaction, in direction of the applied shear, 
introduces compression into the end regions of member, and 
(b) No concentrated load occurs between the face of the support 
and the location of the critical section. 
 
 
1. For non-prestressed members, sections located less than a 
distance d from face of support may be designed for the same 
shear Vu as that computed at a distance, d. 
 
 
 
 
 
 
 



 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. For prestressed member, sections located less than a 
distance h/2 from face of support may be designed for the same 
shear Vu as that computed at a distance h/2. 
 
 
 
 
 

d 

> d 

d 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Steps in Vertical Stirrup Design 
 
I. Calculate the factored shear force Vu at critical sections 
defined in Page 136, or at any section you want the spacing to 
be determined.  
 
II. Calculate the shear strength provided by concrete, Vc. 
 
     Vc = 1

6
 �f'c bw d    (or using Eq. 2 – 38) 

     
     If Vu > Φ Vc, stirrups are necessary, proceed to step III. 
     If Vu < Φ Vc, but Vu > ½ ϕ Vc, proceed to step V 
 (Sec. 5.11.5.5.1) 
     If Vu > ½ Φ Vc, stirrups are not needed 

h/2 

> h/2 
 h/2 

 



 
III. Calculate the shear strength Vs to be provided by the stirrup 
 
     1. Vn = Vu/Φ 
     2.  Vs = Vn – Vc = Vu/Φ - Vc 

 
 If Vs < 2

3
 �f'c bw d, proceed to Step IV 

    (Sect. 5.11.5.6.8) 
 
 If Vs > 2

3
 �f'c bw d, adjust the size of the beam 

    (Sect. 5.11.5.6.8) 
 
 
IV. Spacing of stirrups: 
 
 Spacing, s = Av fy d

Vs
 ; See Figure 2 – 11 in Page 134 for the value 

of Av. 
 
If s < 25 mm, increase the value of Av by either using a bigger 
bar size or adding more shear area. 
 
Maximum spacing, s: 

(a) When Vs < 1
3
 �f'c bw d, Smax = d/2 or 600 mm 

(b) When Vs > 1
3
 �f'c bw d, Smax = d/4 or 300 mm 

 
V. If Vu < ϕ Vc but Vu > ½ ϕ Vc 

 
    Minimum area of stirrup. Av= bw s

3 fy
 (Sect. 5.11.5.5.3) 

   Where s = d/2 or 600 mm (whichever is smaller) 
 



BOND, DEVELOPMENT LENGTH, HOOKS, AND SPLICING 
FOR REINFORCEMENT 
 
Bond 
 
In reinforced concrete we assumed that the concrete and steel 
work as a unit. For this to happen there must be absolutely no 
slippage of the bars in relation to the surrounding concrete. The 
steel and concrete must stick or bend together for them to act as 
a unit. If there is slipping of steel with respect to surrounding 
concrete, there will be no transfer of stress from steel to 
concrete and vice versa and as a result, the concrete will act as 
an unreinforced member and will be subject to collapse. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 -12 Development of bars in footing 
 
Development Length of Straight bars 
 
Bar development length Ld is the embedment necessary to 
assure that the bar can be stressed to its yield point with some 

> Ld 



reserved to insure member toughness. Development length is a 
function of bar diameter db, yield point fy, and concrete strength 
f’c. Other items affecting the development length are bar 
spacing, concrete cover and transverse reinforcement. 
 
Basic Concept of Development Length 
 
In the basic concept of anchorage length, a bar is embedded in 
a mass of concrete as shown. Under initial loading, the actual 
bond stress will be larger near the surface and nearly zero at the 
embedded end. Near failure, the bond stress along the bar will 
be more uniformly distributed. If the average bond stress at 
ultimate is u, then  
 
    
 
 
 
 
  
 
 
 
 
F = Fbond 

Av fy = u × π db Ld  
π
4
 db

2 fy = u × π db Ld  
 

Ld = fy
4 u 

db   Eq. 2 – 43 
  

 
 

concrete 

Fbond 

Ld 

F = Abfy 



According to Section 5.12.1, calculated tension or compression 
in reinforcement at each section of reinforced concrete 
members shall be developed on each side of that section by 
embedment length, hook or mechanical device, or a 
combination thereof. Hooks may be used in developing bars in 
tension only. 
 
The Code provides the basic development length Idb for various 
situations. The values provided by the code have to be modified 
for different condition. Thus, the minimum development length 
Ld required by the code can be expressed as 
 
 
      Ld =Idb × applicable modification factor(s), m  Eq. 2 – 44  
 
but shall not be less than 300 mm, except for the lengths 
required for tension lap splices and for the development of shear 
reinforcing. 
 
Basic Development Length of Bars in Tension 
 
According to Section 5.12.2 of the Code, the basic development 
shall be: 
 
For 32 mm bar & smaller and deformed wire: 
 

Idb= 0.02 Ab fy
�f'c

 ≥ 0.06 db fy                      Eq. 2 – 45  
 
For 36 mm bar: 
 

Idb= 25 fy/�f'c                                      Eq. 2 – 46  
 



For deformed wire: 
 

Idb= 3 dbfy/ 8 �f'c                                 Eq. 2 – 47  
 
 
Modification Factors for Bars in Tension 
 
Basic development length Idb shall be multiplied by the 
applicable modification factors m for the following conditions: 
 
Condition  
(a) For bars in beams or columns with 
a minimum cover not less than 
specified the Code: 

1.0 

(b) Bars in beams or columns with 
transverse reinforcement satisfying tie 
requirements of Code: 

1.0 

(c) Bars n beams of columns with 
clear spacing of not less than 3db: 

1.0 

(d) Bars in the inner layer of slabs or 
wall reinforcement and with clear 
spacing of not less than 3db: 

1.0 

(e) Any bars with cover of not less 
than 2db and with clear spacing of not 
less than 3db: 

1.0 

(f) For bars with cover db or less or 
with clear spacing of 2db or less: 

2.0 

(g) For bars not included in items a to 
f: 

1.4 

(h) For 32 mm bars and smaller with clear spacing not less than 
5db and with cover from face of member to edge bar, measured 
in the plane of the bars, not less than 2.5db, the factors in items 



a to g may be multiplied by 0.8  

(i) Top reinforcement: 1.3 
(j) Lightweight aggregate concrete: 1.3 
(k) Lightweight aggregate when fct is 
specified: �f'c

(1.8 fct)
 

(l) For reinforcement enclosed within special reinforcement not 
less than 6 mm diameter and not more than 100 mm pitch, 
within 12 mm or larger circular ties spaced at not more than 100 
mm on center or within 12 mm larger ties or stirrups spaced not 
more than 100 mm on center and arranged such that alternate 
bars such have support provided by the corner of a tie hoop with 
an included angle of not more than 135° the factors in items a 
through g may be multiplied by 1.8. 
(m) Excess Reinforcement. 
Development length may be reduced 
where reinforcement in a flexural 
member is more than required by 
analysis by a factor. 

As required
As provided

 

 
Basic Development of Bars in Compression 
 
According to Section 5.12.3.2 of the Code, the basic 
development for bars in compression shall be: 
 
       Idb = 0.24 dbfy

�f'c
 ≥ 0.04 dbfy              Eq. 2 – 48   

 
 
Modification Factors for Bars in Compression 
 
Basic development length Idb may be multiplied by the 



applicable factors for: 
 
Condition Modification Factor, m 
(a) Excess Reinforcement. 
Reinforcement more than required by 
the analysis  

As required
As provided

 

(b) Spirals and Ties. Reinforcement 
enclosed within spiral reinforcement 
not less than 6 mm diameter and not 
more than 100 mm pitch or within 10 
mm ties and spaced at not more than 
100 mm on center 

0.75 

 
Development of Bundled Bars 
 
Development length of individual bars within a bundled, in 
tension or compression, shall be that for the individual bar, 
increased 20 percent for three-bar bundle, and 33 percent for 
four-bar bundle. 
 
For determining the appropriate modification factors, a unit of 
bundled bars shall be treated as a single bar of a diameter 
derived from the equivalent total area.  
 
Development of Flexural Reinforcement (Sec. 5.12.10) 
 
Tension reinforcement in flexural members may be developed 
by: 

(a) Bending across the web to be anchored or 
(b) Made continues with reinforcement on the opposite face 

of member. 
Critical sections for development of reinforcement in flexural 
members are at points of maximum stress and at points within 



the span where adjacent reinforcement terminates, or is bent. 
Reinforcement shall extend beyond the point at which it is no 
longer required to resist flexure for a distance equal to the 
effective depth of member or 12db, whichever is greater, except 
at supports of simple spans and at free end of cantilever. 
Continuing reinforcement shall have an embedment length not 
less than the development length Id beyond the point where bent 
or terminated tension reinforcement is no longer required to 
resist flexure. 
 
Flexural reinforcement shall not be terminated in a tension zone 
unless one of the following conditions is satisfied: 

a.) Shear at the cutoff point does not exceed two-
thirds that permitted including shear strength of 
shear reinforcement provided. 

b.) Stirrup area in excess of that required fir shear 
and torsion is provided along each terminated 
bar or wire over a distance from the termination 
point equal to the three-fourths the effective 
depth of member. Excess stirrup area Av shall 
not be less than 0.4 bw s/fy. Spacing s shall not 
exceed d/8 βb where βb is the ratio of the area of 
the reinforcement at the section. 

c.) For 32-mm bar and smaller, continuing 
reinforcement provides double the area required 
for flexure at the cutoff point and shear does not 
exceed three-fourths that permitted. 

Adequate anchorage shall be provided for tension reinforcement 
in flexural members where reinforcement stress is not directly 
proportional to moment, such as sloped, stepped, or tapered 
footings; brackets; deep flexural members; or members in which 
tension reinforcement is not parallel to compression face. 
 



Development of Positive Moment bars 
 
According to Section 5.12.11 of the Code, at least one-third the 
positive moment reinforcement in simple members and one-
fourth the positive moment reinforcement in continuous 
members shall extend along the same face of member into the 
support. In beams, such reinforcement shall extend into the 
support at least 150 mm. 
 
At simple supports and at points of inflection, positive moment 
tension reinforcement shall be limited to a diameter such that Ld 
computed by Eq. 2 – 44 need not exceed Eq. 2 – 49.the 
purpose of this limitation is to keep bond stresses within reason 
at these points of low moments and large shears.  
 

Ld ≤ Mn

Vu 
+ Ia                                 Eq. 2 – 49     

 
Where: 

Mn is nominal moment strength assuming all reinforcement 
at the section to be stressed to the specified yield strength 
fy 
Vu is factored shear force at the section (at point of support 
for simple support and at point of inflection for continuous 
beam) 
Ia at a support shall be embedment length beyond center of 
support 
Ia at a point of inflection shall be limited to the effective 
depth of member or 12db, whichever is greater. 

 
Value of Mn/Vu may be increased 30 percent when the ends of 
reinforcement are confined by a compressive reaction such as 
where there is a column below but not when a beam frames into 



a girder i.e. 
 

     Ld ≤ 1.3 Mn

Vu 
+ Ia                              Eq. 2 – 50  

 
When Ld computed by Eq. 2 – 44 exceed Eq. 2 – 49 or Eq. 2 – 
50, use a smaller bar size, or increase the value of the end 
anchorage Ia as by the use of hooks. 
 
Development of Negative Moment Reinforcement 
 
Negative – moment reinforcement should have an embedment 
length into the span to develop the calculated tension in the bar, 
or a length equal to the effective depth of the member, or 12db 
whichever is greatest. At least one – third of the total negative 
reinforcement should have an embedment length beyond the 
point of inflection not less than the effective depth of the 
member, or 12db, or 1/16 of the clear span whichever is 
greatest. 
 
Hooks 
 
If sufficient space is not available to anchor tension bars by 
running them straight for the required development length as 
required by the Code, hooks may be used. 
 
Development of Standard Hooks 
 
According to Section 5.12.5, the basic development length Ihb for 
standard hooks with fv = 415 MPa is equal to 100 db / f’c. 
 
The actual development length Idh is taken as the basic 
development length Ihb multiplied by applicable modification 



factors, but Idh shall not be less than 8 db nor less than 150 mm. 
 
 
Modification Factors (Sect. 5.12.5.3) 
1. If the reinforcing bar than an fy Other than 415 MPa, Ihb is to 
be multiplied by fy/415. (Sec.5.12.5.3) 
 
2. When 90° hooks and 32 mm or smaller bars are used and 
when 60 mm or more side cover normal to the hook is present, 
together with at least 50 mm cover for the bar extension, Ihb is to 
be multiplied by 0.70 .(Sec.5.12.5.3.2) 
 
3. When hooks made of 32 mm or smaller bars are enclosed 
vertically and horizontally within ties or stirrup ties spaced no 
farther apart than 3db, Ihb is to be multiplied by 0.80.  (Sec. 
5.12.3.3) 
 
4. When the amount of the flexural reinforcement exceed the 
theoretical amount required  and where the specifications being 
used do not specifically require that developments length be 
based on fy the value of Ihb  multiplied by (As required)/(As 
provided). (Sec 5.12.5.3.4) 
 
 
5. When lightweight concrete are used, a modification factor of 
1.3 must be applied. (Sec 5.12.5.3.5) 
 
6. For bars being developed by standard hook  at discontinuous 
end of members with both side cover on top (or bottom) cover 
over hook less than 60 mm hooked bar shall be enclosed within 
or stirrup ties spaced along the full development  length Ihb not 
greater than 3db where db  is the diameter of hooked bar. For 
this case, the factor mentioned in 3 shall not apply.  (5.12.5.4) 



Splices of Reinforcement, General 
 
It is generally necessary to splice bars, partly because of limited 
length of the commercial bars but more because of the limited 
length of the commercial bars but more because of the difficulty 
of interweaving long bars on the job    Splicing may be done by 
welding. By mechanical connections, or most frequently by 
lapping bars.   Lapped are usually tied in contact. 
 
Lap Splices 
 
Lap splices shall not be used for bars larger than 32 mm except 
as provider by the Code. Bars larger than 32 mm lap splices in 
flexural members shall not be spaced transversely farther apart 
than 1/5 the required lap splice neither length nor 150 mm. 
 
Welded Splices and Mechanical Connections 
 
Welded splice and other mechanical connections are permitted 
by the Code. A full welded splices shall have bars butter and 
welded to develop in tension at least 125 percent of specified 
yield strength fy of the bar. A full of mechanical connections shall 
develop in tension or compression, as required at least 125 
percent of specified yield strength fy of the bar. 
 
Splices in Tension 
 
The minimum length of lap for tension lap splices shall as 
required for Class A or B splice. But not less than 300 mm 
where         
                                  Class A splice .......... 1.0 Ld 
                                  Class B splices…….. 1.3 Ld 
 



Where Ld is the tensile development length for the specified 
yield strength fy 
 
Lap splices of deformed bars and deformed wire in tension shall 
be Class B splices except that Class A splices are allowed when 
                       (a)  The area of reinforcement provided is at least 
twice that required by analysis over the entire length of the 
splice. And 
                       (b) One-half or less of the total reinforcement is 
spliced within the required lap strength  
 
Welded splices or mechanical connections used where area of 
reinforcement provided is at least twice that required by the 
analysis shall meet the following: 
     (a) splices shall be staggered at least 600 mm and in such 
manner as to develop at every section but not less than 140 
MPa for the total area of reinforcement provided, and 
     (b) In computing tensile force developed at each portion. 
Spliced reinforcement maybe rated at that fraction of fy denied 
by the ratio of the shorter actual development length to Ld 
required to develop the specified yield strength fy.  
 
Splices of Deformed Bars in Compression 
 
Compression bars may be spliced by lapping, by the end 
bearing, and by welding or mechanical devices. According to the 
Section 5.12.16.1. the minimum splice length of such bars 
should be the development length Ld but may not be less than 
0.07fy db for fy of 415 MPa, Should the concrete strength f’c   
less than 20 MPa, the length of lap should be increased by one-
third. 
 
When bars of different size are lap spliced in compression splice 



length shall be the larger of development length of larger bar, or 
splice length of smaller bar. 
 
AXIALLY LOADED COLUMNS 
 
Classification of Columns 
In general, columns are classified as short columns and long 
columns if the height of the column is less than three times 
 
Its least lateral dimension, it may be considered as short 
compression blocks or pedestal.  Pedestals may be designed 
with reinforcement with a maximum permissible compressive 
strength of 0.85Ø fc, where Ø is 0.70 (Sect. 5.10.15), if the 
compressive strength is greater than this value, the pedestal will 
have to be designed as a reinforced concrete short column if the 
reinforced concrete column fails due to the initial material failure. 
It is classified as short column. The load of the short columns 
depends on the dimension and the strength of the materials of 
which it is made if the length of the column is increased. 
Columns that fail by buckling are called long columns 
 
P-Delta Moment 
 
When a column subjected to primary moment’s m, such as 
those caused by applied loads or joints rotation, the axis of the 
member deflects laterally.    This deflection additional moment 
applied to the column, which is equal to the column, load times 
lateral deflection. This moment called secondary moment or P-
Delta moment.  
 
If the secondary moments become too large, the column is said 
to be long column and it is necessary to design its section from 
the sum of both primary and secondary moments. However, the 



Code permits that columns be design its short columns if the 
secondary or P∆ effects does not reduce their strength by more 
than 5%. 
 
(a) Plain concrete pedestal – this may be used only if the height 
does not exceed three times the least lateral dimension. 
 
(b) Tied columns – A column in which the longitudinal bars are 
braced with a series of close ties. 
 
(c) Spiral columns – A column in which the longitudinal bars and 
concrete core are wrapped with a closely spaced helix or spiral. 
 
(d) Composite columns- These columns may contain a 
structural steel shape surrounded by longitudinal bars with ties 
or spiral or it may consist of high-strength steel tubing filled with 
concrete. 
 
Tied and spiral columns are the most common forms. Either 
type may be circular, octagonal, square, or rectangular section. 
Tied columns may also be L. T or other irregular shape. 
 
Axial Load Capacity of Columns 
 
Axial load without moment is not practical case in design of 
columns, but the discussion of such case is necessary for 
explaining theory involved eccentrically loaded columns. For a 
column subjected purely by an axial load. The nominal load Pn 
that it can carry is the sum of strength steel which is fy Ast and 
the strength of concrete 0.85 f’c(Ag – Ast), where  Ag – Ast is the 
net concrete area, or 
 
 



 
Pn = 0.85 f’c(Ag - Ast) + fy Ast                        Eq. 2 - 51 

 
 
To counter the effect of possible eccentricities, the nominal 
strength Pn is multiplied by0.90 for tied columns and 0.75 for 
spiral columns. Finally the ultimate axial load capacity of the 
column is Ø Pn where Ø is 0.70 for tied columns and 0.75 for 
spiral columns. 
 
The axial load capacity of the tied column is given by: 
 
 
 
 
 
Where Ø = 0.70 
            Ag = gross concrete area = b x t 
            Ast = area of steel reinforcement 
 
To counter the effect of possible eccentricities, the nominal 
strength Pn is multiplied by0.90 for tied columns and 0.75 for 
spiral columns. Finally the ultimate axial load capacity of the 
column is Ø Pn where Ø is 0.70 for tied columns and 0.75 for 
spiral columns. 
These maximum load limits govern wherever the moment is 
small enough to keep the eccentricity under 0.10h where h is 
the column width parallel to the applied moment. 
 
Limits of Reinforcement for Tied Columns 
 
(Section 5.10.9) 
l. Ast shall not be less than 0.01 Ag and Ast shall not be more than 

     Pu = Ø Pn = Ø 0.80 [0.85 f’c(Ag - Ast) + fy Ast]            Eq. 2 - 52 



0.60Ag. 
ll. The minimum number of longitudinal bars is 4 for bars within 
rectangular or circular ties, 3 for bars within triangular ties. 
 
Sizes and Spacing of Main Bars and Ties 
l. Clear distance between longitudinal bars shall be not 
less than 1.5db  nor 40 mm. (Section 5.7.6.3) 
 
ll. Use 10-mm diameter ties for 32-mm bars or smaller and at 
least 12 mm in size for 36 mm and bundled longitudinal bars. 
(Section 5.7.10.5.2) 
 
lll. Vertical spacing of ties shall be the smallest of the following: 
(Section 5.7.10.5.2) 
 
1. 16 × db (db = longitudinal bar diameter) 
2. 48 × tie diameter 
3. Least dimension of the column 
 
lV.  Ties shall be arranged such that every corner an alternate 
longitudinal bar shall have lateral support provided by the corner 
of the tie with an included angle of not more than 135° and no 
bar shall be farther than 150 mm clear on each side along the 
tie from such a laterally supported bar. Where longitudinal bars 
are located around the perimeter of a circle, a complete circular 
tie is allowed. (Section 5.7.10.5.3) 
 
SPIRAL COLUMN 
 
The axial load capacity of a spiral column is given by 
 

Pu = Ø Pn = Ø 0.80 [0.85 f’c(Ag - Ast) + fy Ast]        Eq. 2 - 53 
 



Where Ø = 0.75 
This maximum load limit governs wherever the moment is small 
enough to keep the eccentricity under 0.05h. 
 
Limits of Reinforcement for Spiral Columns (Section 5.10.9) 
    l.     Ast shall not be less than 0.01Ag and Ast shall not be more 
than 0.06Ag. 
    ll.    The minimum number of longitudinal bars is 6 
 
Sizes and Spacing of Spirals 
      l.    For cast-in-place construction, size of spiral shall be less 
than 10 mm (Section 5.7.10.4.2) 
      ll. Clear spacing between spirals shall not exceed 75 
mm, nor less than 25 mm. (Section 5.7.10.4.3) 
      lll. Anchorage of spiral reinforcement shall be provided by 1-
½ extra turns of spiral bar. (Section 5.7.10.4) 
      lV. Splices of spiral reinforcement shall be lap splices of 
48db but not less than 300 mm or welded. (Section 5.7.10.5) 
      V.   The percentage of spiral steel ρs is computed from the 
following equation 
 

ρs= volume of spiral in one loop
voume of concrete core for a pitch s

                         Eq. 2 – 54 

ρs=
4 as (Dc - db)

S Dc
2                         Eq. 2 – 55 

 
Whereas is the cross-sectional area of spiral bar, Dc is diameter 
of the core out to out of the spiral and db is the diameter of the 
spiral bar. 
         Vl. The minimum spiral percentage is given by: (Section 
5.10.9.3)  
 

ρs= 0.45 �Ag

Ac
- 1� f'c

fy
                    Eq. 2 – 56 



 
Where fy is the specified yield strength of spiral reinforcement 
but not more than 415 MPa. 
 
COMPOSITE COLUMNS (Section 5.10.14) 
 
Composite compression members include all such members 
reinforced longitudinally with structural steel shapes, pipe, or 
tubing with or without longitudinal bars. Strength of a composite 
member is computed for the same limiting conditions applicable 
to ordinary reinforced concrete members. Any axial load 
strength assigned to concrete of a composite member should be 
transferred to the concrete by members of brackets in direct 
bearing on the composite member concrete. All axial load 
strength not assigned to concrete of a composite member 
should be developed by direct connection to the structural steel 
shape, pipe, or tube. 
 
According to Sec. 5.10.3.5.1. the design axial strength Pu of a 
composite member is: 
 
         Pu = Ø Pn = Ø 0.85 [0.85 f’c Ac + fy Ast + Fy Ass]     Eq. 2 - 57 
 
Where   Φ     =   0.75  for  composite  member  with  spiral 
                    reinforcement 
             Φ = 0.70 for other reinforcement 
             Ast = area of reinforcing steel of strength fy 
             Ass = area of structural steel shape of strength fy   
             Ac = net concrete area 
 
For evaluation of slenderness effects, radius of gyration of a 
composite section should not be greater than the value given by  
 



STRUCTURAL STEEL ENCASED CONCRETE CORE 
(Section 5.10.14.6) 
 
For steel pipe filled with concrete Figure 2- 24(a):  
 

     tmin = D� fy
8 Es

                          Eq. 2 – 59 

 
 
For steel tubing filled with concrete Figure 2- 24(b): 
 

tmin = b1 �
fy

3 Es
                         Eq. 2 – 60 

tmin = b2 �
fy

3 Es
                         Eq. 2 – 61 

 
 
 
Spiral Reinforcement around Structural Steel Core 
(Section 5.10.14.7) 
 
A   composite   member with  spirally  reinforced  concrete 
around  a  structural  steel  core  should  conform  to  the 
following: 
 

1. Specified compressive strength of concrete fc 
should be not less than 17 MPa. 

2. Design yield strength of structural steel core should 
be the specified minimum yield strength for grade 
of structural steel used but not to exceed 350 MPa. 

3. Spiral reinforcement should conform to Sec. 
5.10.9.3 



4. Longitudinal bars located within the spiral should be 
not less than 0.01 nor more than 0.08 times net 
area of concrete section. 

5. Longitudinal bars located within the spiral may be 
considered in computing Ast and lt. 

 
 
TIED REINFORCEMENT AROUND STEEL CORE 
(Section 5.10.14.8) 

 
A composite member with laterally tied concrete around a 
structural steel core should conform to the following: 

 
1. Specified compressive strength of concrete fc should not 

be less than 17 MPa. 
2. Design yield strength of structural steel core should be 

the specified minimum yield strength for grade of 
structural steel used but not to exceed 350 MPa. 

3. Lateral ties should extend completely around the 
structural steel core. 

4. Lateral ties should have a diameter not less than 1/50 
times the greatest side dimension of composite member, 
except that ties should not be smaller than Welded wire 
fabric of equivalent area is permitted. 

5. Vertical spacing of lateral ties should not exceed 16 
longitudinal bar diameters, 48 tie bar diameters, or ½ 
times the least dimension of the composite member.t 

6. Longitudinal bars located within the ties should be not 
less than 0.01 nor more than 0.08 times net area of 
concrete section.  

7. A longitudinal bar should be located at every corner of a 
rectangular cross section, with other longitudinal bars 



spaced not farther apart than one half the least side 
dimension of the composite member. 

8. Longitudinal bars located within the ties may be 
considered in computing Ast for strength but not in 
computing it for evaluation of slenderness effects. 

 
SLENDERNESS EFFECTS IN COLUMNS 
 
The slenderness of columns depends on its unsupported length 
and the geometry of its section.  As the slenderness increases, 
the tendency that it will buckle also increases. 
 
To visualize the effect of slenderness, let us imagine a stick (say 
wire or broomstick) with the same cross-sectional area but with 
varying length, being compressed until it break. 
 
According to Section 5.10.10.1 of NSCP, design of compression 
members should be based on forces and moments determined 
from analysis of the structure. Such analysis should take into 
account influence of axial loads and variable moment of inertia 
on member stiffness and fixed-end moments, effects of duration 
of loads. In lieu of this procedure, the slenderness effects in 
compression members may be evaluated in accordance with 
approximate procedure presented in Sec. 5.10.11. 
 
APPROXIMATE EVALUATION OF SLENDERNESS EFFECTS 
(Section 5.10.11) 
 
Unsupported Length of Compression Members 
 
Unsupported length lu of a compression member should be 
taken as the clear distance between floor slabs, beams, or other 



members capable of providing lateral support for that 
compression member. Where column capitals or haunches are 
present, unsupported length should be measures to the lower 
extremity of capital or haunch in the place considered. 
 
Effective Length Factors (5.10.11.2.1 & 5.10.11.2.2) 
 
For  compression  members  braced  against  sideway effective  
length  factor  k  shall  be  taken  as  1 0  unless analysis  shows  
that  a  lower  value  is  justified.  For compression  members  
not  braced  against  sideway, effective length factor k  shall  be  
determined  with  due consideration  of  effects  of  cracking  
and reinforcement on relative stiffness, and should be greater 
than 1.0. 
 
Radius of Gyration 
 
Radius of gyration r may be taken equal to 0.30 times the 
overall dimension in the direction stability is being considered for 
rectangular compression members, and 0.25 times the diameter 
for circular compression members. For other shapes, r may be 
computed for the gross concrete section. 
 
    For rectangular compression members: 
 

r = 0.3 h                                       Eq. 2 – 62 
 
Where h = overall dimension in the direction stability is being 
considered 



    For circular compression members of diameter d: 
 

r = 0.25 D                                 Eq. 2 – 62 
 
 
Consideration of Slenderness Effects 
According to Section 5.10.11.4.1 of the Code, for compression 
members braced against sideway, effects of where M1b is the 
smaller factored end moment (positive if bent in single 
curvature) and M2b is the larger factored end moment. 
 
For compression members not braced against sideway 
Effects of slenderness may be neglected 
 
For all compression members with klu / r > 100, an analysis as 
defined in Sec. 5.10.10.1 shall be made 
 
Braced and Unbraced Frames 
 
As  a  guide  in  judging  whether  a  frame  is  braced  or 
unbraced, the Commentary on ACI 318-83 indicates that a 
frame may be considered braced if the bracing elements such 
as shear walls. Shear trusses, or other means resisting lateral 
movement if a storey, have a total stiffness at least six times the 
sum of the stiffness of all the columns resisting lateral 
movement in that storey. 
 
 
 



Alignment Charts 
 
The ACI Committee 441 has proposed that k should be obtained 
from the Jackson and Moreland alignment chart as Shown in 
Figure 2- 27. To use this chart, a parameter Ψa for end A of 
column AB and similar parameter Ψb must be computed for end 
B.  The parameter Ψ at one end of the column equals the sum of 
the stiffness (∑Еl/L) of the column meeting at that joint 
(including the column in question) divided by the sum of the 
stiffness of the beam meeting at that joint. Once Ψa  and Ψb are 
known, k is obtained by placing a straightedge between Ψa  and 
Ψb. The point where the straightedge crossed the middle 
monograph is k 
 

ψ = ∑EI/L of columns
∑EI/L of beams

                                Eq. 2 –64 

 
Ψ = ∞ for pinned ends and 1.0 for fixed ends 
 
For columns for which the slenderness ratio lies between 22 and 
100, and therefore the slenderness effect on load - carrying 
capacity must be taken into account, either an elastic analysis 
can be performed to evaluate the effects of lateral deflections 
and other effects producing secondary stresses, or an 
approximate method based on moment magnification may be 
used. 
 
 
 



FOOTINGS 
 
Footings are structural members used to support columns or 
walls and transmit their load to the underlying soils. Reinforced 
concrete is the most suited material for footing towers, bridges, 
and other structures. 
 
Since the bearing capacity of soils is normally low (usually less 
than 400 kPa), and the load from a column or wall is large 
(usually greater than 1000 kPa), the footing spread the columns 
or wall pressure to the soil by providing bigger bearing area, 
thus reducing the bearing pressure within permissible values. 
 
TYPES OF FOOTINGS 
 
The common types of footing are the wall footing, isolated or 
single-column footing, combined footing raft or mat, and pile 
caps. 
 
1. A wall footing is a continuous strip of concrete that supports a 
bearing wall. 
 
2. An isolated or single-column footing is a square, rectangular, 
or singular slab of concrete that supports an individual column. 
These are widely used for columns with light load are not closely 
spaced. 
 
3. A combined footing is a longer rectangular slab strip that 
supports two or more individual columns. This type might be 



economical where two heavily loaded columns are so spaced 
that when designed for isolated footing would run into other. 
Isolated footings are usually square or rectangular and, when 
used for columns located right at the property line, a column can 
be combined with an interior column to fit within the property 
line. 
 
4. A floating, raft, or mat foundation is a single thick mat or slab 
that supports the entire structure. This kind of foundation is used 
where soil strength is low or where columns loads are large but 
where piles or caissons are not used. For these types of footing, 
the excavations approximately equal to the building weight. 
 
5. Pile caps are slabs of reinforced concrete used to do 
distribute column loads to group of piles. 
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PERMISSIBLE SOIL PRESSURES, qa 
 
The allowable soil bearing qa capacity to be used in the design 
of footing can be obtained by the principles of soil mechanics 
through the services of a soils engineer. This can be derived on 
the basis of test borings, load tests, and other experimental 
investigation. 
 
In the absence of soil investigation, the building code of the 
Philippines provide certain approximate allowable bearing 
pressures that can be used for the type of soil and soil 
conditions. 
 
Classificatio
n of 
materials 

Minimum 
depth of 
footing 
belowad 
adjacent 
virgin 
ground 

Value 
permissible 
if footing is 
at minimum 
depth 

Increase in 
value for 
each 1 m of 
depth that is 
footing 
below 
minimum 
depth 

maximum 
value 

1 2 3 4 5 
 Mete

r 
Fee
t 

Kg/m² kP
a 

Kg/m² kP
a 

Kg/m² kP
a 

Mat or Raft Footing 

Columns 

Footing 
 



Rock 0.20  20% ultimate 
crushing 
stength 

0 0 20% ultimate 
crushing 
strength 

0.3 1 

Compact 
coarse sand 

0.6 2 *7,50
0 

*75 *5,00
0 

*50 40,00
0 

40
0 

Compact fine 
sand 

0.6 2 *5,00
0 

*50 *3,30
0 

*33 40,00
0 

40
0 

Loose sand 0.9 3 *2,50
0 

*25 *1,60
0 

*16 15,00
0 

15
0 

Hard clay or 
sandy clay 

0.6 2 20,00
0 

20
0 

13,30
0 

13
3 

40,00
0 

40
0 

Medium stiff 
clay or sandy 
clay 

0.6 2 10,00
0 

10
0 

3,300 33 30,00
0 

30
0 

Soft sandy 
clay or clay 

0.9 3 5,000 50 830 8.3 10,00
0 

10
0 

Compact 
inorganic 
sand and silt 
mixture 

0.6 2 5,000 50 3,300 33 20,00
0 

20
0 

Loose 
inorganic 
sand silt 
mixture 

0.9 3 2,500 25 1,600 16 5,000 50 

Loose 
organic and 
silt mixtures 
and muck 

  0 0 0 0 0 0 

 
These values are for footing 300 mm in width and may be 
increased in direct proportion to the width of the footing to a 
maximum of three times the designed value. 



 
Table 2- 7: Allowable Foundation Pressure 
Source: NSCP Table No. 7-B 
 
 

(1) Lateral bearing and lateral sliding resistance may be 

combined 

 Allowable  
Foundatio
n 
Pressure 
kN/m² (3) 

Lateral 
Bearing 
(kN/m²/
m of 
depth) 
below 
natural 

Lateral Sliding (1) 

Classes of 
Material (1) 

 Grade 
(4) 

Coefficie
nt 
(5) 

Resistant 
KN/m² 
(6) 

1. Massive 
Crystalline 
Bedrock 

200 190 0.70  

2. Sedimentary 
and Foliated 
Rock 

100 60 0.35  

3. Sandy Gravel 
and/or Gravel 
(GW & GP) 

100 30   

4. Sand, Silty 
Sand, Clayey 
and Clayey 
Gravel and 
Clayey Gravel 
(SW, SP, Sm, 
SC, GM and 
GC) 

75 25 0.25  

5. Clay, Sandy 
Clay, Silty Clay 
and Clayey Silt 
(CL, ML, MH, 
and CH) 

50 15  7 



(2) For soil classifications OL, OH and PT (i.e. organic 
clays and peat), a foundation investigation shall be 
required. 

(3) All values of allowable soil pressure are for footing 
having a minimum width of 300 mm and a minimum 
depth of 300 mm into natural grade. Except as in 
Footnote (7) below, increase of 20% is allowed for 
each additional foot of width and/or depth to maximum 
value of three times the designated value. 

(4) May be increased in the amount of the designated 
value for each additional 300 mm of depth to a 
maximum of 15 times the designated value. Isolated 
poles for uses such as flagpoles or signs or poles 
used to support buildings which are not adversely 
affected by a 12-mm motion at ground surface due to 
short term lateral loads may be designed using lateral 
bearing values equal to two times the tabulated 
values. 

(5) Coefficient to be multiplied by the dead load. 
(6) Lateral sliding resistance value to be multiplied by the 

contact area. In no case shall the lateral sliding 
resistance exceed one half the dead loads. 

(7) No increase for width is allowed. 
 

LOADS AND REACTIONS IN FOOTING 
 
According the Code Section 5.15, the base area of footing and 
the number of piles may be determined from unfactored forces 
and moments transmitted by footing to soil or piles and 
permissible soil pressure or permissible pile capacity.  
 

area of footing = 
unfactored load (DL+LL)
effective soil pessure, qe

 Eq. 2-74 



 
                 number of piles = unfactored load (DL+LL)

load capacity per pile 
     Eq. 2 - 75 

 
Where q, is the effective soil bearing capacity and is computed 
as: 
 

qe= qa- γc hc - γs hs                          Eq. 2-76  
 
Where γc is the unit weight of concrete (usually taken as 23.54 
kN/m²) hc is the total depth of footing, γc is the unit weight of soil 
above the footing, and hc is the height of soil above the footing. 
 
 
 
 
 
 
 
 
 
CRITICAL SECTIONS IN FOOTINGS 
 
The critical sections for moment, shear, and development 
reinforcement in footings supporting a rectangular or square 
columns or pedestals are measured at the face of the column or 
pedestal. For footings supporting a circular or regular polygon 
shaped columns or pedestal, the Code Section 5.15.3 permits to 
treat these sections as square members with the same area. 
 
 
 
 

Natural Grade 

Soil, ys 

Concrete, yc Base of Footing 

hs 

hc 

Circle Square with equal 
area as the circle 

Regular
Polygon 

Square with equal 
area as the polygon 



Figure 2- 29: Equivalent square sections for establishment 
                                     Of critical sections 
 
Critical Sections for Moment 
 
Footings are similar to beams or slabs carrying the effective soil 
pressure as the load and the column as the support hence it is 
subject to moments. According to Section 5.15.4.1 the external 
moment on any section for a footing may be determined by 
passing a vertical plane to the footing, and computing the 
moment of the forces acting over the entire area on one side of 
that vertical plane. 
 
For isolated footings, the critical sections for moment are 
located as follows: 

(a) At the face of column, pedestal, or wall for footings 
supporting a concrete column, pedestal, and wall. 

 
 
 
 
 
 
 
 
 
 

(b) Halfway between middle and edge of wall, for footing 
supporting a masonry wall.  

 
(c) Halfway between face of column and edge of steel 

base plate, for footing supporting a column with steel 
base plate. 

Critical Section 
Critical Section 

 



 
 
 
 
 
 
 
 
 
 

 
Distribution of Flexural or Main Reinforcement 
 
Footings may be classified as a one-way footing or two way 
footing. One-way footings are those, which are reinforced in one 
direction only while two-way footings are reinforced in two 
directions. 

 
 
 
 
 
 
 
 
 
 
 
 
According to Section 5.15.4 in one-way footings, and two-
way square footings, reinforcement may be distributed 
uniformly across the entire width of footing. 
 

Critical Section 

a a/2 

Steel Base Plate Critical Section 

One – way footing 

Two – way footing 



In two-way rectangular footings, reinforcements may be 
distributed as follows: 
(a) Reinforcement in long directions may be distributed 

uniformly across the entire width of footing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2- 30: Reinforcement distribution for two-way 
rectangular footing 
 
(b) For the reinforcement in the short directions, a portion 

of the total reinforcement may be distributed uniformly 
over a bandwidth (with center on centerline of column) 
equal to the length of the short side of footing. The 
rest of the reinforcement may be distributed uniformly 
outside the center bandwidth of footing. The area of 
reinforcement in the center band is given by the 
formula 

 

Long Side,L 

Outside 
center band 

Center band,S Outside 
center band 

Short Side,S 



 
As in center band width
total As in short direction

= 
2

β + 1
 Eq. 2-77 

 

β = 
long side of footing
short side offooting

             Eq. 2 - 78 

 
 

SHEAR IN FOOTINGS 
 

The shear strength of slabs and footings in the vicinity of the 
columns, concentrated load, or reactions is governed by the 
more severe of two conditions, the beam action or one-way 
shear and the two-way or punching shear. In any of these two 
conditions, the Code requires that the maximum value of Vu if 
stirrups are not used ØVc is the shear strength provided by 
concrete. 

       
1. Beam action (one-way), where each critical section to 

be investigated extends in a plane across the entire 
width. For this case, the slab or footing may be 
designed in accordance to Section 5.11.1 through 
Section 5.11.5. According to this section, the shear 
strength provided by concrete Vc may not exceed  
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Vc = 
1
6

 �f'c bw d                        Eq. 2-79 
 
With reference to the figure, Vu = qu × shaded area, where qu is 
the factored soil pressure and is equal to Pu/Afooting. 
 

2. Two-way action where each of the critical section to 
be investigated may be located so that its perimeter b 
is a minimum but need not approach closer than d/2 
to: 

(a) edges or corners of columns, concentrated 
loads, or reactions areas or 

(b) Changes in slab thickness such as edges of 
capitals or drop panels. 

 
With reference to the figure, bo = 4(c + d), Vu = q u × shaded 
area. 
 
For two-way action, Vc is the smaller value of Eq. 2- 80 & Eq. 2- 
82. 
 

Vc = �1+ 
2
βc
�
�f'c
6

 bo d                                       Eq. 2-80 

 
 

where βc = 
long side of column
short side of column

                  Eq. 2 – 81 
 
 

Vc = 
�f'c
3

 bo d                                                         Eq. 2 - 82 
 



 
 
 
 
 
 
 
 
 
One-way shear will very often control the depths for rectangular 
footings, whereas two-way shear normally controls the depth of 
square footings. 
 
Minimum Depth of Footing 
 
According to Section 5.15.7 the depth of footing above bottom 
reinforcement may not be less than 150 mm for footings on soil, 
and 300 mm for footings on piles. 
 
Critical Sections for Development of Reinforcement in 
Footings 
 
The development of reinforcement in footings is in accordance 
with Section 5.12 the critical sections for development of 
reinforcement may be assumed at the same location as those of 
critical moment. 
 
Load Transfer from Columns to Footings 
 
All forces acting at the base of a column must be transferred 
into the footing. Compressive forces may be transferred directly 
by bearing while uplift or tensile forces must be transferred by 
developed reinforcing such as dowels and mechanical 

d/2 
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d 
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L 
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d/2 
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 c c + d 

c + d 



connectors. 
 
At the base of the column, the permissible bearing strength of 
for either surfaces is Ø (0.85 fc A1), where Ø = 0.70, but it may 
be multiplied by √A 2/A ≤ 2 for bearing in the footing 
(Section 5.10.15) where A1 is the column area and A2 is the 
area of the portion of the supporting footing that is geometrically 
similar and concentric with the columns. 
 
Dowels 
 
If the computed bearing force is higher than the allowable value, 
it is necessary to provide dowels to carry the excess force. This 
can also be done by extending the column bars into the footing. 
If the computed bearing force is less than the allowable 
theoretically, no dowels are needed but the code specifies a 
minimum value. 
 
For cast-in-place columns and pedestal, the area of 
reinforcement across interface shall not be less than 0.005 
times the gross area of the column or pedestal, and at footings 
and 36-mm longitudinal bars in compression only may be lap 
spliced with dowels to provide the required reinforcement. 
Dowels may not be larger than 32 mm bar and may extend into 
column a distance not less than the development length of 36 
mm bars or the splice length of the dowel, whichever is greater, 
and into the footing a distance not less than the development 
length of the dowels (Section 5.15.8.2.3) 
 
COMBINED FOOTINGS 
 
Combined footings support more than one column. One 
situation where these footings may be used is when the 



columns are close together so that isolated or individual footing 
would run into each other. Another situation is when the column 
is very near the property line. A trapezoidal footing or strap (T) 
footings may also be used is the two adjacent column are very 
near the property line. 
 
In any of these shapes, it is very important to let the centroid of 
the footing coincide with the centroid of the combined column 
loads. In this manner the bearing pressure underneath the 
footing would be uniform and it prevents uneven settlement. 
 
PRESTRESSED CONCRETE 
 
Prestressed concrete are those in in which cracking and tensile 
forces are greatly reduced or eliminated by the imposition of 
internal stress that are of opposite character to those that will be 
caused by the service or working loads. 
 
The materials used in prestressed concrete are concrete and 
high strength steels also known tendons. The concrete to be 
used have higher strength than that used for reinforced concrete 
members. 
 
Analogy of Prestressing 
 
 
 
 
 
 
 
 
 

Row of books 
lifted from the 
table with the 
application of 
compressive force 
at the end 



Methods of Prestressing 
 
There are two general methods of prestressing, these are 
pretensioning and posttensioning. In pretensioning, tendons 
were tensioned before the concrete was placed. After the 
concrete had hardened sufficiently, the tendons are cut and 
prestress force is transmitted to concrete by bond. This method 
is well suited for mass production where the tendons can run to 
several meters long across several beams in the casting bed, as 
shown in the figure below. 
 
 
 
 
 
 
In posttensioning, the tendons are tensioned after the concrete 
is placed and has gained the required strength. The tendons are 
placed inside hallow ducts or tunes located in the form. When 
the concrete has hardened, the tendons are stretched and 
mechanically attached to end anchorage. In this method, the 
prestress force is transferred to the concrete by end bearing. 
 
Hallow ducts where tendons are placed 
 
 
 
 
Stress Calculation 
 
 
 
 

AbutmentR Abutment Tendons Beams 
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The stresses to be considered in prestressed concrete are those 
due to (a) the direct compressive force by the tendons (b) the 
moment due to the eccentricity of the prestress and (c) the 
flexural stress due to loadings. The resultant stress at any 
section is the algebraic sum of these stresses at that section 
with compressive stress being negative and tensile stress 
positive. 
 
General Equation: 
 

f = - 
P
A

 ± 
Pec

I
 ±

Mc
I

                          Eq. 2-83 
 
 
For rectangular section: 
 

f = - 
P
bd

 ± 
6Pe
bd2  ±

6M
bd2                          Eq. 2-84 

 
Where P = prestressing force 
            e = eccentricity 
            M = moment due to loading 
            l = moment of inertia of the gross section 
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Rule of Sign 
 
The first term of the equation is always negative (compressive). 
 
For the second term of the equation use negative (-) to get the 
stress at the bottom and positive (+) to get the stress at the top. 
 
For the third term, use the positive (+) sigh if the bending 
causes tension in the fiber and negative (-) if the bending 
causes compression in the fiber. 
 
Loss of Prestress 
 
The immediate prestressing force applied on concrete is called 
initial stress. The stresses, however, reduces with losses must 
be considered to determine the effective prestress fse. According 
to Section 5.18.6.1 the following losses must be considered. 
 

1. Anchorage seating loss - When the jacks are released 
and the prestress forces transferred to the end 
anchorage system, a little slippage of the tendon 
occurs. This slippage shortens the tendons thus 
reduces its stress. 

2. Elastic shortening of concrete - When tendons are cut 
for a pretensioned member, the prestress force is 
transferred to the concrete, with the result that the 
concrete is put in compression and shortens. This 
causes the tendons to shorten also thus losses some 
stress. The loss in the stress can be calculated by the 
formula. 
 

∆fS = n fC = 
n PO

Ag
                                   Eq. 2-85 



 
Where ∆fs is the loss of prestress, fc is the stress in 
concrete after transfer of stresses from the cables, n 
is the modular ratio which is equal to Es/Ec, Po is the 
initial cable stress, and Ag is the gross concrete area. 

3. Creep of concrete - The gradual deformation of 
concrete under stress causing a reduction of the 
length of tendon.  
The loss in cable stress due to creep can be 
determined by multiplying the creep coefficient Ct by 
nfc.  
 

∆fS = C1 n fC                                              Eq. 2-86 
 

The value of Ct = 2.0 is recommended for 
pretensioned section and 1.6 for posttensioned ones, 
fc is the stress in concrete adjacent to the centroid 
tendons due to the initial prestress (-P/A) and due to 
the permanent dead loads which are applied to the 
members after prestressing (-Pec/l) where c is 
measured from the centroid of the selection to the 
centroid of the tendons. 
 

4. Shrinkage of concrete – Concrete shrinks during 
setting and hardening. The amount of shrinkage that 
occurs in concrete varies from almost zero to 0.0005 
mm/mm with an average value of about 0.0003 
mm/mm. The shrinkage loss is approximately 7% in 
pretensioned sections and 6% for the posttensioned 
ones. The loss in the prestress due to shrinkage is 
equal to εsh is given by the formula 
 

εsh = 0.00055 (1 - 0.06 V/S) (1.5 - 0.15 H)           Eq. 2-87 



 
Where V/S is the volume to surface ratio and H is the 
relative humidity correction 

5. Relaxation of tendon stress - This refers to the creep 
of tendons due to permanent stress. 

 
6. Friction loss due to intended or unintended curvature 

in post-tensioning tendons - This refers to the friction 
loss between the tendon and the surrounding 
materials this loss are due to the so-called length and 
curvature effects. The length effect or wobble effect is 
the friction that would have existed if the cable had 
been straight and not curved. The curvature effect is 
caused by the coefficient of friction between the 
materials caused by the pressure on the concrete 
from the tendons.  

 
UPDATES FROM NSCP 2001 (C101-01)  
 
Factor β1  
 
410.3.7.3 Factor β, shall be taken as 0.85 for concrete strengths 
above 30 MPa, β, shall be reduced continuously at a rate of 0.05 
for each  7 MPa of strength in excess of 30 MPa but β,shall not 
be taken less than 0.65. 
 
 

For fC ≤ 30 MPa, β1= 0.85                  Eq. 2-88 
 

For fC > 30 MPa, β1 = 0.85 - 
0.05

7
 (fC - 30) ≥ 0.     Eq. 2-89 

 
 



Minimum Reinforcement of flexural Members 
 
410.6.1 A every section a flexural member where tensile 
reinforcement is required by analysis, the area As provided shall 
not be less than that given by  
 

AS min = 
�f'C
4fy

 bW d                                              Eq. 2-90 

 

and not less than  
1.4 bW d

fy
                               Eq. 2-91 

 
 
410.6.2 For statically determinate T-section with flange in 
tension, the area AS min shall be equal to or greater than the 
smaller value given either by:  
 

AS min = 
�f'C
2fy

 bW d                        Eq. 2-92 

 
or Eq. 2-90 with bW set equal to the width of the flange    
 
410.6.3 The requirements of Sections 410.6.1 and 410.6.2 need 
not to be applied if at every section the area of the tensile 
reinforcement is at least one-third greater than that required by 
the analysis 
 
410.6.4 For structural slabs and footings of uniform thickness, 
the minimum area of tensile reinforcement in the direction of 
span shall be the same as that required by Section 407.13    



(Shrinkage     and     Temperature Reinforcement). Maximum 
Spacing of this reinforcement shall not exceed three times the 
thickness and 450 mm 
 
 
DESIGN FOR TORSION  
 
ACP = area enclosed by outside perimeter of concrete cross 
section mm² 
 
Al = total area of longitudinal reinforcement to resist torsion mm² 
Ao = gross area enclosed by shear flow, mm²  
 
Aoh = area enclosed by center line of the outermost closed 
transverse torsional reinforcement, mm² 
 
At = area of one leg of a closed stirrup resisting torsion within a 
distance s, mm² 
 
fpc = compressive stress in concrete (after allowance for all 
prestress losses) at centroid of cross-section resisting externally 
applied loads or at junction of web and flange when the centroid 
lies within the flange, MPa 
 
fyl = yield strength of longitudinal torsional reinforcement MPa 
 
fy = yield strength of closed transverse torsional reinforcement, 
MPa 
 
h = overall thickness of member, mm 
 
Pcp = outside perimeter of the concrete cross-section mm 
 



Ph = perimeter of centerline of outermost closed transverse 
torsional reinforcement, mm 
 
S = spacing of shear or torsion reinforcement indirection parallel 
to longitudinal reinforcement, mm 
 
θ = angle of compression diagonals in truss analogy for torsion 
 
411.7.1 It shall be permitted to neglect torsion effects when the 
factored torsional moment Tu is less than. 
 
1. For non-prestressed members:  
 

ϕ�f'C
12

 �
Acp

2

Pcp
�                              Eq. 2-93 

 
2. For prestressed members:  
 

ϕ�f'C
12

 �
Acp

2

Pcp
��1+ 

3fpc

�f'C

                Eq. 2-94 

 
For members cast monolithically with a slab, the overhanging 
flange width used in computing a Acp and Pcp shall conform to 
Section 413.3.4 
 
411.7.2 Calculation of Factored Torsional Moment Tu.  
 

411.7.2.1 If the factored torsional moment Tu in a 
member is required to maintain equilibrium and 



exceeds the minimum value given in section 411.7.1, 
the member shall be designed to carry the torsional 
moment in accordance with sections 41 1.7.3, through 
411.7.6. 
 
 
411.7.2.2 In a statically indeterminate structure where 
reduction of the torsional moment in a member can 
occur due to the redistribution of internal forces upon 
cracking, the maximum factored torsional moment Tu 
shall be permitted to be reduced to  
 

1. For non-prestressed members.   At the section described in 
Section 411.7.2.4 
 

ϕ�f'C
3

 �
Acp

2

Pcp
�                   Eq. 2-95 

 
2. For prestressed members. At the sections decribed is Section 
411.7.2.5 
 

ϕ�f'C
3

 �
Acp

2

Pcp
��1+ 

3fpc

�f'C

                  Eq. 2-96 

 
In such a case, the correspondingly redistributed bending 
moments and shears in the adjoining members shall be used in 
the design of those members 
 

411.7.2.3 Unless determined by a more exact 



analysis, it shall be permitted to take the torsional 
loading from slab as uniformly distributed along the 
member 
 
411.7.2.4 In non-prestressed members, sections 
located less than a distance d from the face of a 
support shall be designed for not less than the torsion 
Tu computed at a distance d. if a concentrated torque 
occurs within this distance the critical section for 
design shall be at the face of the support. 
 
411.7.2.5 In prestressed members, section located 
less than a distance h/2 from the face of a support 
shall be designed for not less than the torsion T u 
computed at a distance h/2 if a concentrated torque 
occurs within this distance, the critical section for 
design shall be at the face of the support 
 

411.7.3 Torsional Moment Strength 
 

411.7.3.1 The cross-sectional dimensions hall be such 
that: 
 

1. For solid sections: 
 

��
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2. For hollow sections: 
 

�
Vu

bwd
�

2

+ �
Tuph

1.7 Aoh
2�  ≤ ϕ 

⎝

⎛ Vc

bwd
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2�f'C
3

⎠

⎞       Eq. 2-98 

 
411.7.3.2 If the wall thickness varies around the 
perimeter of a hollow section, Eq. 2- 98 shall be 
evaluated at the location where the left-hand side of 
Eq. 2- 98 is a maximum. 
 
411.7.3.3 If the wall thickness is less than Aoh/Ph, the 
second term in Eq. 2- 98 shall be taken as: 
 

 �
Tu

1.7 Aoht
�                Eq. 2 - 99 

 
Where t is thickness of the wall of the hollow section 
at the location where the stresses are being checked. 

 
411.7.3.4 Design yield strength of non-prestresses 
torsion reinforcement shall not exceed 415 MPa. 

 
411.7.3.5 The reinforcement required for torsion shall 
be determined from:  

 
Tu ≤ ϕ Tn                                     Eq. 2-100 

 
411.7.3.6 The transverse reinforcement for torsion 
shall be designed using: 
 



Tn =
2Ao At fyv

s
cot2θ                    Eq. 2-101 

 
Where Ao shall be determined by analysis except that 
it shall be permitted to take Ao equal to 0.85Aoh; θ 
shall not be taken smaller than 30 degrees nor larger 
than 60 degrees. It shall be permitted to take θ equal 
to: 

 
1. 45° for non-prestressed members or members with 
less prestress than in Item 2 below, 
2. 37.5° or prestressed members with an effective 
prestressed force not less than 40 percent of the 
tensile strength of the longitudinal reinforcement. 
 
411.7.3.7 The additional longitudinal reinforcement 
required for torsion shall not be less than:  
 

At = ph
At

s
fyv

fyl
cot2θ                    Eq. 2-102 

 
Where θ shall be the same value used in Eq. 2- 101 
and At/s shall be taken as the amount computed from 
Eq. 2- 101 not modified in accordance with section 
411.7.5.2 or 411.7.5.3 

 
411.7.3.8 Reinforcement required for torsion shall be 
added to that shear, moment and axial force that act 
in combination with the torsion. The most restrictive 
requirements for reinforcement spacing and 
placement must be met. 

 
411.7.3.9 It shall be permitted to reduce the area of 



longitudinal torsion reinforcement in the flexural 
compression zone by an amount equal to Mu/ (0.9 d 
fyl), where Mu is the factored moment acting the 
section in combination with Tu except that the 
reinforcement provided shall be less than required by 
section 411.7.5.3 or 411.7.6.2 

 
411.7.3.10 In Prestressed Beam: 
1. The total longitudinal reinforcement including 
bending moment at that section shall resist the 
factored bending moment at that section plus ab 
additional concentric longitudinal tensile force equal to 
Al fyl, based on the factored torsion at that section, 
and 
 
2. The spacing of the longitudinal reinforcement 
including tendons shall satisfy the requirements in 
section 411.7.6.2 

 
411.7.3.11 In prestressed beams, it shall be permitted 
to reduce the area of longitudinal torsional 
reinforcement on below that required by section 
411.7.3.10 in accordance with section 411.7.3.9 

 
411.7.4 Details of torsional reinforcements 
 

411.7.4.1 Torsion reinforcement shall consist of 
longitudinal bars or tendons and one or more of the 
following: 
 
1 .Closed stirrups or close ties, perpendicular to the 
axis of the member, or 
2. A close cage of welded wire fabric with transverse 



wires perpendicular to the axis of the member, or  
    3. Non-prestressed beams, spiral reinforcement. 
 

411.7.4.2 Transverse torsional reinforcement shall be 
anchored by one of the following: 
 
1. A 135 degree standard hook around a longitudinal 
bar, or 
2. According to section 412.14.2.1, 412.14.2.2 or 
412.14.2.3 in regions where the concrete surrounding 
the anchorage is restrained against spalling by a 
flange or slab or similar member  
 
411.7.4.3 Longitudinal torsion reinforcement shall be 
developed at both ends. 
 
411.7.4.4 For hollow sections in torsion, the distance 
measured from the centerline of the transverse 
torsional reinforcements to the inside face of the wall 
of the hollow section shall not be less than 0.5 Aoh/ph 

 
411.7.5 Minimum Torsion Reinforcement  
 

411.7.5.1. A minimum area of torsion reinforcement 
shall be provided in all regions where the factored 
torsional moment 1; Exceeds the values specified in 
section 411.7.1. 
411.7.5.2. Where the torsional reinforcements are 
required by section 411.7.5.1 the minimum area of 
transverse closed stirrups shall be computed by: 
 

Av+ 2At = 
1 bw s

3 fv
                              Eq. 2-103 



 
411.7.5.3 Where torsional reinforcement is required 
by section 411.7.5.1 the minimum total area of 
longitudinal torsional reinforcement shall be computed 
by: 
 

 Atmin = 
5 �f'cAcp 

12 fvt
 - �

At

s
�

fyv

fyt
Pn                 Eq. 2-103 

 
 

Where At/s shall not be taken less than 1/6 bw/fyv. 
 
411.7.6 Spacing of Torsion Reinforcement. 
 

411.7.6.1 The spacing of transverse torsion 
reinforcement shall not exceed the smaller of Ph/8 or 
300 mm. 

 
411.7.6.2 The longitudinal reinforcement required for 
torsion shall be distributed around the perimeter of the 
closed stirrups with a maximum spacing of 300 mrn. 
The longitudinal bars or tendons shall be inside the 
stirrups. There shall be at least one longitudinal or 
tendon in each comer of the stirrups. Bars shall have 
a diameter at least 1/24 of the stirrup spacing but not 
less than a 10 mm diameter bar. 
 
411.7.6.3 Torsion reinforcement shall be provided for 
a distance of at least (bt + d) beyond the point 
theoretically required. 

 
 



DEVELOPMENT AND SPLICES OF REINFORCEMENT 
 
Notations 
 
Ab = area of an individual bar, mm² 
 
As = area of non-prestresses tension reinforcement, mm² 
 
At =total cross-sectional area of all transverse reinforcement 
which is within the spacing s and which crosses the potential 
plane of splitting through the reinforcement being developed, 
mm² 
 
Av = area of shear reinforcement within a distance s, mm² 
 
Aw = area of an individual wire to be developed or spliced, mm² 
a =depth pf equivalent rectangular stress block as defined in 
section 410.3.7.1, mm 
 
bw =web width, or diameter of singular section, mm 
 
c = spacing or cover dimension, mm. See section 412.3.4 
 
d= distance from extreme compression fiber to centroid of 
tension reinforcement, mm 
 
db=nominal diameter of bar, wire or prestressing strand, mm. 
 
fc = specified compressive strength of concrete, MPa 
 
√fc = square root specified compressive strength of concrete, 
MPa 
 



fct= average splitting tensile strength of lightweight aggregate 
concrete, MPa 
 
fps= stress in prestressed reinforcement at nominal strength, 
MPa 
 
fsc =effective stress in prestressed reinforcement(after allowance 
for all prestressed losses), MPa 
 
fy = specified yield strength of transverse reinforcement, MPa 
h=overall thickness of member, mm 
 
Ktr= transverse reinforcement index = Atr fyt/10sn 
 
la= additional embedment length at support or at point of 
inflection, mm 
 
ld=development length, mm 
 
ld = ldb multiplied by applicable modification factors 
 
ldb= basic development length , mm 
 
Idh =development length of standard hook in tension, measured 
from critical section to outside end of hook [straight embedment 
length between critical section and start of hook (point of 
tangency) plus radius of bend and one bar diameter, mm 
 
ldh = lhb times applicable modification factors 
 
lhb = basic development length of standard hook in tension, mm 
 
Mn= nominal moment strength at section, Newton meter 



 
Mn= As fy (d-a/2) 
 
N= number of bars in a layer being spliced or developed at a 
critical section 
 
n = number of bars or wires being spliced or developed along 
the plane of splitting 
 
s = maximum center to center spacing of transverse 
reinforcement within ld, mm 
 
Sw = spacing of wire to be developed or spliced, mm 
 
Vu = factored shear force at section. 
 
α = reinforcement location factor. See Section 412.3.4. 
 
β = coating factor. See Section 412.3.4. 
 
βb = ratio of area of reinforcement cut off to total area of tension 
reinforcement at section 
 
γ = reinforcement size factor. See section 412.3.4 
 
λ = lightweight aggregate concrete factor. See Section 412.3.4. 
 
 
412.2 Development of Reinforcement - General 
  

412.2.1 Calculated tension or structural concrete 
members shall be developed on each side of that 
section by embedment length, hook or mechanical 



device, or a combination thereof hook shall not be 
used to develop bars in compression. 

 
412.2.2 The values of fc used in Section 412 shall not 
exceed 8.0 MPa. 

 
412.3 Development of deformed Bard and Deformed Wire in 
Tension 
 

412.3.1 Development length, ld, in terms of diameter, 
db, for deformed bars and deformed wire in tension 
shall be determined from either Section 412.3.2 or 
412.3.3 but ld shall not be less than 300 mm. 

 
412.3.2 For deformed bars or deformed wire, ld/db 
shall be as follows: 

 

 
20 mm diameter and 

smaller bars and 
deformed wires 

25 mm diameter 
and larger bars 

Clear spacing of 
bars being 

developed or 
spliced not less 

than db clear 
cover not less 
than db and 

stirrups or ties 
throughout ld not 

less than the 
code minimum 

or 
Clear spacing of 

Id
db

= 
12 fy α β λ

25 �f'c
 

Id
db

= 
3 fy α β λ

5 �f'c
 



bars being 
developed or 

spliced not less 
than db 

 

Other cases 
Id
db

= 
18 fy α β λ

25 �f'c
 

Id
db

= 
9 fy α β λ

10 �f'c
 

 
412.3.3 For deformed bars or deformed wire, ld/db shall be: 
 
 

Id
db

= 
9 fy α β γ λ

10 �f'c �
c + ktr

db
�

                                    Eq. 2-105 

 
In which the term (c + ktr)/db shall not be taken greater than 2.5 
412.3.4 The factors for use in the expressions for development 
of deformed bars and deformed wires in tension in Sections 
412.1 through 412.20 are as follows: 
 

Reinforcement factor, α 
For horizontal reinforcement so 

placed that more than 300 mm of 
fresh concrete is cast in the 

member below the development 
length or splice 

α = 1.3 

For other reinforcement α = 1.0 
Coating factor, β 

For epoxy-coated bars or wires 
with cover less than 3db or clear 

spacing less than 6db 
β = 1.5 

All other epoxy-coated bars or  



wires 
For uncoated reinforcement β = 1.0 

However, the product α β need not be taken greater than 1.7 
Reinforcement size factor, γ 

For 20 mm diameter and smaller 
bars and deformed wires γ = 0.8 

For 25 mm diameter and larger 
bars γ = 1.0 

Lightweight aggregate concrete factor, λ 
When lightweight aggregate 

concrete is used, however, when 
fct is specified, λ shall be 

permitted to be fc/1.8fct but not 
less than 1.0 

λ = 1.3 

When normal weight concrete is 
used λ = 1.0 

 
C = spacing or cover dimension, millimeters. Use the smaller or 
either the distance from the center of the bar to the nearest 
concrete surface or one-half the center-to-center spacing of the 
bars being developed. 
 
Ktr = transverse reinforcement index = As fyt/10 s n 
  
Where: 
Atr = total cross-sectional area of all transverse reinforcement 
which is within the spacing s and which crosses the potential 
plane of splitting through the reinforcement being developed, 
square millimeters. 
 
fyt = specified yield strength of transverse  reinforcement square 
millimeters. 



s = maximum center-to-center spacing of transverse 
reinforcement within ld, millimeters. 
N = number of bars or wires being developed along the plane of 
splitting  
 
it shall be permitted to use Ktr = 0 as a design simplification 
even if transverse reinforcement is present. 
 
412.3.5 Excess reinforcement. Reduction in development 
length shall be permitted where reinforcement in flexural 
member is in excess of that required by analysis except where 
anchorage or development for h is specifically required or the 
reinforcement is designed under provisions of Selection 
421.2.1.4 …………… [(As required)/(As provided)] 
 
412.4 Development of Deformed Bars in Compression 
412.4.1 Development length ldb and applicable modification 
factors as defined in this section. But ld shall not less than 200 
mm 
 
412.4.2 Basic development length ldb shall be  
 

Idb= 
 fy db

4 �f'c
                                   Eq. 2-106 

 
412.4.3 Basic development length ldb shall be permitted to be 
multiplied by applicable factors for 
 
412.4.3.1 Excess reinforcement. 
 
Reinforcement in excess of that required by  
analysis …………… [(As required)/(As provided)] 
 



412.4.3.2 Spirals and Ties Reinforcement enclosed within spiral 
reinforcement not less than 10 mm diameter and not more than 
100 mm pitch or within 12 mm diameter ties in conformance with 
section 407.11.5 and spaced not more than 100 mm on 
center………………………………………………...0.75 
 
ALTERNATE DESIGN METHOD (WORKING STRENGTH) 
 
Notations 
 
Ag = gross of section, mm² 
Av = area of shear reinforcement within a distance s, mm² 
A1 = loaded area 
A2 =maximum area of the portion of the supporting surface that 
is geometrically similar to and concentric with the loaded area 
bo = perimeter of critical section for slabs and footings, mm 
bw = web width, or diameter of circular section, mm 
d = distance from extreme compression fiber to centroid of 
tension reinforcement, mm 
Ec = modulus of elasticity of concrete, MPa. 
Es = modulus of elasticity of reinforcement, MPa 
Fc = specified compressive strength of concrete, MPa 
√f’c = square root of specified compressive strength concrete, 
MPa 
fct = average splitting tensile strength of lightweight aggregate 
concrete, MPa 
fs = permissible tensile stress in reinforcement, MPa  
fy = specified yield strength of reinforcement, MPa 
M = design moment 
n = modular ratio of elasticity EᵟᶴEc 
N = design axial load normal to cross section occurring 
simultaneously with V; to be taken as positive for compression, 
negative for tension, and to include effects of tension due to 



creep and shrinkage 
s = spacing of shear reinforcement in direction parallel to 
longitudinal reinforcement. mm 
v = design shear stress  
vc = permissible shear stress carried by concrete, MPa 
Vh = permissible horizontal shear stress, MPa 
V = design shear force at section 
ɑ = angle between inclined stirrups and longitudinal axis of 
member 
βc = ratio of long side to short side of concentrated load or 
reaction area 
ρw = ratio of tension reinforcement = As/bw d 
ϕ = strength reduction factor 
 
 
424.2 Scope 
 
424.2.1 Non-prestressed reinforced concrete members shall be 
permitted to be designed using service loads (without load 
factors) and permissible service load stresses in accordance 
with provisions of Section 424 
 
424.2.2 For design of members not covered by Section 424, 
Appropriate provisions of this code shall apply. 
 
424.2.3 All applicable provisions of this code for  
nonprestressed concrete, except Section 408.5, shall apply to 
members designed by the Alternate Design Method. 
 
424.2.4 Flexural members shall meet requirements for 
deflection control in Section 409.6, and requirements of 
Sections 410.5 through 410.8 of this code. 
 



424.3 General 
 
424.3.1 Load factors and strength reduction factors ϕ shall be 
taken as unity for members designed by the Alternate 
Design Method. 
 
424.3.2 It shall be permitted to proportion members for 75 
percent of capabilities required by other parts of Section 424 
when considering wind or earthquake forces combined with 
other loads, provided the resulting section is not less than that 
required for the combination of dead and live load. 
424.3.3 When dead load reduces effects of other loads, 
members shall be designed for 85 percent of dead load in 
combination with the other loads. 
 
424.4 Permissible Service Load Stresses 
 
424.1 Stresses in concrete shall not exceed the following: 
1. Flexure: 
® Extreme fiber stress in compression………………. 0.45 f¹ c 
2. Shear: 
® Beams and one way slabs and footings: 

• Shear carried by concrete, Vc …………. 0.38√f¹ c 
• Maximum shear carried by concrete plus shear 

reinforcement, Vc ………………………... 0.38√f¹ c 

® Joists: 
• Shear carried by concrete, Vc ………….. 0.09√f¹ c 

® Two-way slabs and footings: 
• Shear carried by concrete, Vc  



 1
12
�1+ 2

βc
�√f'c 

But not greater than  1
6
 √f’ c 

3. Bearing on loaded area ………………. 0.3 f’ c 
 

424.4.2 Tensile stress in reinforcement shall not exceed the  
Following: 

1. Grade 275 ……………………………. 140MPa 
2. Grade 425 reinforcement or greater and 

Welded wire fabric (plain or deformed) ………... 
170MPa 

3. For flexural reinforcement, 10mm or less 
In diameter, in one way slabs of not 
More than 4 m span ………………….. 0.50fy 
 

424.5 Development and Splices of Reinforcement 
 
424.5.1 Development and splices of reinforcement shall be as 
required in Section 412 of this Chapter. 
 
424.5.2 In satisfying requirements of Section 412.12.3, Mn shall 
be taken as computed moment capacity assuming all positive 
moment tension reinforcement at the section to be stressed to 
the permissible tensile stress fs and Vu shall be taken as 
unfactored shear force at the section. 
 
 
424.6 Flexure 
 
For investigation of stresses at service loads, straight-line theory 
(for flexure) shall be used with the following assumptions: 
 



424.6.1 Strains vary linearly as the distance from the neutral 
axis, except for deep flexural members with overall depth- span 
ratios greater than 2/5 for continuous spans and 4/5 for simple 
spans, a nonlinear distribution of strain shall be considered. 
424.6.2 Stress-strain relationship of concrete is a straight line 
under service loads within permissible service load stresses. 
 
424.6.3 In reinforced concrete members, concrete resists no 
tension. 
 
424.6.4 It shall be permitted to take the modular ratio, n = 
Es/Ec as the nearest whole number (but not less than 6). 
Except in calculations for deflections, value of n for lightweight 
concrete shall be assumed to be the same as for normal weight 
concrete of the same strength. 
 
424.6 5 In doubly reinforced flexural members, an effective 
modular ratio of 2Es/Ec as shall be used to transform 
compression reinforcement for stress computations. 
Compressive stress in such reinforcement shall not exceed 
permissible tensile stress. 
 
424.7 Compression Members With or Without Flexure 
 
424.7.1 Combined flexure and axial load capacity of 
compression members shall be taken as 40% of that computed 
on accordance with provisions on Section 410 if this Chapter. 
 
424.7.2 Slenderness effects shall be included according to 
requirements of Sections 410.10 through 410.13 in 
Equations (410-10) and (410-19) the rem Pu shall be 
Replaced by 2.5 times the design axial load, and the factor  
0.75 shall be taken equal to 1.0. 



 
424.7.3 Walls shall be designed in accordance with Section 
414 of this Chapter with flexure and axial load capacities taken 
as 40 percent of that computed using Section 414. In 
Equation (414-1), ϕ shall be taken equal to 1.0. 
 
424.8 Shear and Torsion 
 

v = 
V

bw d
                                          Eq. 2-107 

 
 
424.8.1 Design shear stress v shall be computed by 
 
Where V is design shear force at section considered. 
 
424.8.2 When the reaction, in direction of applied shear, 
introduces compression into the end regions of a member, 
sections located less than a distance d from face of support 
shall be permitted to be designed for the same shear as that 
computed at a distance d. 
 
424.8.3 Whenever applicable, effects of torsion, in accordance 
with provisions of Section 411 of this Chapter, shall be added. 
Shear and torsional moment strengths. Provided by concrete 
and limiting maximum strengths for torsion shall be taken as 55 
percent of the values given in Section 411. 
 
424.8.4 Shear stress carried by concrete 
 
424.8.4.1 For members subject to shear and flexure only, shear 
stress carried by concrete Vc shall not exceed 
0.09 √f¹c unless a more detailed calculation is made in 



accordance with Section 424.7.4.4. 
 
424.8.4.2 For members subject to axial compression. 
Shear stress carried by concrete Vc, shall not exceed 
0.09 √f¹c unless a more detailed calculation is made in 
accordance with 424.7.4.5. 
 
424.8.4.3 For members subject to significant axial tension,  
Shear reinforcement shall be designed to carry total shear, 
unless a more detailed calculation is made using where N is 
negative for tension. Quantity N/Ag shall be expressed in MPa. 
 
 

Vc = 0.09 (1+ 0.6 N/Ag) �f'c                    Eq. 2-108 
 
 
424.8.4.4 For members subject to shear and flexure only. 
It shall be permitted to compute Vc by 
 
 

Vc= 0.85 �f'c   + 0.9 ρwVd/M                   Eq. 2-109 
 
 
But Vc shall not exceed 0. 14 √f¹c. Quantity Vd/m shall not be 
taken greater than 1.0. Where M is design moment occurring 
simultaneously with V at section considered.  
 

Vc = 0.09 (1+ 0.09 N/Ag) �f'c                    Eq. 2-110 
 
424.8.4.5 For members subject to axial compression, it 
Shall be permitted to compute Vc by quantity N/Ag shall be 
expressed in MPa. 



 
424.8.4.6 Shear stresses carried by concrete Vc apply to normal 
weight concrete. When lightweight aggregate concrete is used, 
one of the following modifications shall apply: 

1. When fct is specified and concrete is proportioned in 
accordance with Section 405.3, fcr/6.7 shall not 
exceed √f¹c  

2. When fa is not specified the valued of following shall 
be multiplied by 0.75 for “all-lightweight” concrete and 
by 0.85 for “sand-lightweight” concrete. Linear 
interpolation shall be permitted when partial sand 
replacement is used. 

424.8.4.7 In determining shear stress carried by concrete  
Vc. Whenever applicable, effects of axial tension due to 
Creep and shrinkage in restrained members shall be 
Included and it shall be permitted to include effects of 
Inclined flexural compression in variable-depth members. 
 
424.8.5 Shear Stress Carried by Shear Reinforcement 
 
 424.8.5.1 Types of shear reinforcement 
 Shear reinforcement shall consist of one of the 

following: 
1. Stirrups perpendicular to axis of member; 
2. Welded wire fabric with wires located 

perpendicular to axis of member making an 
angle of 45 degrees or more with longitudinal 
tension reinforcement; 



3. Longitudinal reinforcement with bent portion 
making an angle of 30 degrees or more with 
longitudinal tension reinforcement; 

4. Combinations of stirrups and bent longitudinal 
reinforcement; 

5. Spirals. 

424.8.5.2 Design yield strength of shear reinforcement shall not 
exceed 415 MPa 
 
424.8.5.3 Stirrups and other bars or wired used as shear 
reinforcement shall extend to a distance d from extreme 
compression fiber and shall be anchored at both ends 
according, to Section 412.14 of this Chapter to develop design 
yield strength of reinforcement. 
 
424.8.5.4 Spacing limits for shear reinforcement 
 
 424.8.5.4.1 Spacing of shear reinforcement placed 
perpendicular to axis of member shall not exceed d/2 nor 600 
mm. 

424.8.5.4.2 Inclined stirrups and bent longitudinal 
reinforcement shall be so spaced that every 45-degree line, 
extending toward the reaction from mid-depth of member 
(d/2) to longitudinal tension reinforcement, shall be crossed by 
at least one line of shear reinforcement. 
 

424.8.5.4.3 When (v – vc) exceeds 1
6
 √f¹c maximum 

spacing given in Sections 424.7.5.4.1 and 424.7.5.4.2 shall be 
reduced by one-half 

 
424.8.5.5 Minimum shear reinforcement 



 
 424.8.5.5.1 A minimum area of shear reinforcement 
shall be provided in all reinforced concrete flexural members 
where design shear stress V is greater than one-half the 
permissible shear stress Vc carried by concrete, except; 
 

1. Slabs and footings; 
2. Concrete joist construction defined by Section 

408.12 f this Chapter;  
3. Beam with total depth .not greater that 250mm 

2.5 times thickness of flange or one-half the 
width of web, whichever is greatest. 
 

 424.8.5.5.2 Minimum shear reinforcement 
requirements of Section 424.8.5.5.1 shall be permitted to be 
waived if shown by test that required ultimate flexural and shear 
strength can be developed when shear reinforcement is omitted. 
 
 424.8.5.5.3 Where shear reinforcement is required by 
section 424.8.5.5.1 or by analysis, minimum area of shear 
reinforcement shall be computed by where bw and s are in mm. 
 

Ay = 
bw s
3 fy

                                   Eq. 2-111 

 
424.8.5.6 Design of shear reinforcement 
 
 424.8.5.6.1 Where design shear stress V exceeds 
shear stress carried by concrete Vc, shear reinforcement shall 
be provided in accordance with Sections 424.8.5.6.2 through 
424.8.5.6.8. 
 



424.8.5.6.2 When shear reinforcement perpendicular 
to axis of member is used.  

 

Av = 
(v - vc) bw s

 fy
                            Eq. 2 - 112 

 
424.8.5.6.3 When inclined stirrups are used as shear 

reinforcement, 
 

Av = 
(v - vc) bw s

 fy (sin α+ cos α)                        Eq. 2 - 113 

 
 

424.8.5.6.4 When shear reinforcement consists of a 
single bar or a single group of parallel bus, all bent up at the 
same distance from support. 

 

Av = 
(v - vc) bw d

fs sin α
                           Eq. 2 - 114 

 
Where (v – vc) shall not exceed 1

8
√f¹c. 

 
                  424.8.5.6.5 When shear reinforcement consists of a 
series of parallel bent-up bars or groups of parallel bent-up bars 
at different distances from the support required are shall be 
computed by Eq. 2-113. 
 
                  424.8.5.6.6 Only the center of three- quarters of the 
inclined portion of any longitudinal bent bar shall be considered 
effective for shear reinforcement. 
 
                  424.8.5.6.7 When more than one type of shear 



reinforcement is used to reinforce the same portion of a 
member, required area shall be computed as the sum of the 
various types separately. In such computations, vc shall be 
included only once. 
 
                424.8.5.6.8 Value of (v – vc) shall not exceed 3

8
√f¹c 

 
424.8.6 Shear Friction 
 
Where it is appropriate to consider shear transfer across a given 
plane, such as existing or potential crack, an interface between 
dissimilar materials, or an interface between two concrete cast 
at different times, shear-friction provisions of Section 411.8 of 
this Chapter shall be permitted to be applied, with limiting 
maximum stress for shear taken as 55 percent of that given in 
Section 411.8.5. Permissible stress in shear-friction 
reinforcement shall be that given in Section 424.4.2 
 
424.8.7 Special provisions for slabs and footings  
 
               424.8.7.1 Shear capacity of slabs and footings in the 
vicinity of concentrated loads of reactions is governed by the 
more severe of two conditions. 
 
             424.8.7.1.2 Two-way action for slab or footing, with a 
critical section perpendicular to plane of slab and located so that 
its perimeter is a minimum, but need not approach closer that 
d/2 to perimeter of the slab or footing shall be designed in 
accordance with Sections 424.8.7.2 and 424.8.7.3. 
 
   424.8.7.2 Design shears stress v shall be computed by 
 
 



 

v = 
V

bo d
                                 Eq. 2-115 

 
Where v and bo shall be taken at the critical section defined in 
Section 424.8.7.1.2 
 
   424.8.7.3 Design shear stress v shall not exceed vc given by 
Eq. 2-166 unless shear reinforcement is provided 
 

Vc = 
1
12

 �1+ 
2
βc
��f'c               Eq. 2 -116 

 
But vc shall not exceed (1/6) √f’c βc is the ratio of long side to 
short side of concentrated load or reaction area. When 
lightweight aggregate concrete is used, the modifications of 
Section 424.8.4.6 shall apply. 
 
   424.8.7.4 If shear reinforcement consisting of bars or wires is 
provided in accordance with Section 411.13.3 of this Chapter vc 
shall not exceed 1

12
√f’c and v shall not exceed 1.25 √f’c. 

 
   424.8.7.5 If shear reinforcement consisting of steel |- or 
channel-shaped sections (shear heads) is provided in 
accordance with Section 411.13.2 of this Chapter , v on the 
critical section defined in Section 424.8.7.1.2 shall not exceed 
0.3 √f’c and v on the critical section defined in Section Beam 
with total depth .not greater that 250mm Beam with total depth 
.not greater that 250mm Beam with total depth .not greater that 
250mm 411.13.4.7 shall not exceed 1

6
√f’c. In Equations (411-39) 

and (411-40), design shear force V shall be multiplied by 2 and 
substituted Vu. 



424.8.8 Special provisions for other members 
 
For design of deep flexural members, brackets and corbels, and 
walls, the special provisions of Section 411 of this Chapter shall 
be used, with shear strengths provided by concrete and limiting 
maximum strengths for shear taken as 55 percent of the values 
given in section 411. In section 411.11.6 the design axial load 
shall be multiplied by 1.2 if compression and 2.0 if tension, and 
substituted for Nu. 
 
424.8.9 Composite concrete flexural members 
 
For design of composite concrete flexural members, permissible 
horizontal shear stress Vh shall not exceed 55 percent of the 
horizontal shear strengths given in Section 417.6.2 of this 
Chapter. 
 
424.8.8 Special provisions for other members 
 
For design of deep flexural members, brackets and corbels, and 
walls, the special provisions of Sections 411 of this  
Chapter shall be used, with shear strengths provided by 
concrete and limiting maximum strengths for shear taken as 55 
percent of the values given in Section 4411. In Section  
411.11.6 The design axial load shall be multiplied by 1.2 if 
compression and 2.0 if tension, and substituted for Nu. 
 
424.8.9 Composite concrete flexural members 
 
For design of composite concrete flexural members permissible 
horizontal shear stress Vn shall not exceed 55 percent of the 
horizontal shear strengths given in Section 417.6.2 of this 
Chapter. 



STRUCTURAL DESIGN 

BASIC CODE REQUIREMENTS 

Types of Construction (Sect. 4.2) 
Three basic types of construction and associated design 
assumptions are permissible under the respective conditions 
stated hereinafter, and each will govern in a specific manner the 
size of members and the types and strength of their connection. 
 
Type 1, commonly designated as rigid-frame (continuous frame), 

assumes that the beam-to-column connection have 
sufficient rigidity to hold virtually unchanged the original 
angles between intersecting members. 

 
Type 2, commonly design as simple framing (unrestrained, free-

ended), assumes that insofar gravity loading is 
connected for shear only, and are free to rotate under 
gravity load. 

 
Type 3, commonly designated as semi-rigid framing (partially 

restrained), assumes that the connections of beams and 
girder possess a dependable and known moment 
capacity intermediate in degree between the rigidity of 
Type 1 and the flexibility of Type 2. 

 
The design of all connections shall be consistent with the 
assumptions as to type of construction called for on the design 
drawings. 
 
Type 1 constructions unconditionally permitted under this 
Specification. Two different methods of design are recognized. 
Within the limitation laid down in Sect, 4.27, members of 



continuous portions of frames may be proportioned on the basic 
of their maximum predictable strength to resist the specific design 
loads multiplied by the prescribed load factors, Otherwise, Type 
1 construction shall be designed, within the limitations of Sect. 
4.5, to resist the stresses produced by the specified design loads, 
assuming moment distribution in accordance with the elastic 
theory. 
 
Type 2 construction is permitted under this Specification, subject 
to the situation of the following paragraph, whenever applicable. 
In building designed as Type 2 construction (i.e., with beam-
column connection other than wind connection assumes flexible 
under gravity loading) the wind moments may be distributed 
among selected joints of the frame, provided that: 

1. The connections and connected members have 
adequate capacity to resist the wind moments. 

2. The girders are adequate to carry the full gravity load 
as “simple beams”. 

3. The connections have adequate inelastic rotation 
capacity to avoid overstresses of the fastener or welds 
under combined gravity and wind loading. 
 

Type 3 (semi-rigid) construction will be permitted only upon 
evidence that the connections to be used are capable of 
furnishing, as a minimum, a predictable proportion of full end 
restraint. The proportioning of main members joined by such 
connection shall be predicated upon on greater degree of end 
restraint that this minimum. 
 
Type 2 and 3 construction may necessitate some none plastic, 
but self-limiting, deformation of a structural steel part. 
 
 



LOADS AND FORCES (SECT. 4.3) 
 
Dead Load 
 
The dead load to be assumed in design shall consist of the weight 
of steelwork and all material permanently fastened thereto or 
supported thereby. 

Live Load 
 
The live load shall be that stipulated by the applicable code under 
which the structure is being, designed or that dictated by the 
conditions involved. 

Impact 
 
For structures carrying live loads, which induce impact, the 
assumed live load shall be increased sufficiently to provide for 
same. If not otherwise specified, the increase shall be: 
 
For support of elevators……………………………………….100% 
 
For cab operated traveling crane support 
  girders and their connections…………………………………25% 
 
For pendant operated traveling crane support 
  girders and their connections……………………...………….10% 
 
For support of light machinery, shaft or motor 
  drive, not less than……………………………………………..20% 
 
For supports of reciprocating machinery or power 



  driven units, not less than……………………………………..50% 
 
For hangers supporting floors and balconies…………………33% 
 
 
Table 3 – 1 ASTM Structural Steel Grades for Rolled Products 

Steel Type ASTM 
Designation 

Fy Fx 
ksi MPa ksi MPa 

Carbon 
A36 

32 221 58-80 400-551 

36 248 58-80 400-551 
A529 42 290 60-85 414-586 

High-Strength 
Low-Alloy  

A441 
 

40 276 60 414 
42 290 63 434 
46 317 67 462 
50 345 70 483 

A
57

2-
G

ra
de

 
 

42 42 290 60 414 
50 50 345 65 448 

60 60 414 75 517 
65 65 448 80 551 

Corrosion 
Restraint 
High-Strength 
Low-Alloy 

A242 
42 290 63 434 
46 317 67 462 
50 345 70 483 

A588 
42 290 63 434 
46 317 67 462 
50 345 70 483 

Quench & 
Tempered Alloy 

 
A514 90 620 100-

130 689-896 

100 689 110-
130 758-896 

  
  



Table 3 – 2 Allowable Stresses for Structural Steel (Section 4.5) 
Types of Stresses & Condition NSCP 

Specification Eq. 

Tension:   
Except for pin-connected members   

1. On Gross Area Ft= 0.60 Fy A 
2. On Effective Net Area Ft= 0.50 Fu B 
For pin-connected members   
1. On Net Area Ft= 0.45 Fy C 

Shear:   
1. On effective cross-sectional area 

(except at reduced section, the 
effective area of rolled and fabricated 
shape may be taken as the overall 
depth times the web thickness) 

Fv= 0.40 Fy D 

2. At beam end connections where the 
top flange is coped, and in similar 
situations where failure might occur 
by shear along a plane through the 
fasteners, or by a combination of 
shear along a plane through the 
fasteners plus tension along a 
perpendicular plane ( At reduced 
section) 

Fv= 0.30 Fy E 

Compression members/Columns:   
1. When kL/r < Cc 

Cc= �
2π2E

Fy
 

FS = 
5
8

+ 
3( kL

r )
8CC

- 
( kL

r )
3

8Cc
3  

 

𝐹𝐹𝑎𝑎 = 

⎣
⎢
⎢
⎡
1- 

�kL
r �

2

2Cc
2

⎦
⎥
⎥
⎤ Fy

FS
 

 

F 

2. When kL/r > Cc 
𝐹𝐹𝑎𝑎 = 

⎣
⎢
⎢
⎡ 12π2𝐸𝐸

23 �kL
r �

2

⎦
⎥
⎥
⎤
 

 

G 

 



Types of Stresses & Condition NSCP 
Specification Eq. 

3. On axially loaded bracings & 
secondary members where L/r 
>120 

Fa=
Fa [by Eq. F or Eq. G]

1.6 - L
200r

 H 

4. On gross area of plate girder 
stiffeners Fa = 0.60 Fy I 

5. On web of rolled shapes a toe of 
fillet (cripping) Fa = 0.75 Fy J 

Bending on Strong Axis of I-shaped 
Members and Channels 

  

Compact Section   
Tension & Compression 

(provided the flanges are 
connected continuously to the 
web or webs and the laterally 
unsupported length of the 
compression flange Lb does 
not exceed the value of Lc, 
where Lc is the smaller value 
of 

170
�Fy 

 or 
137,900

�d
Af
�Fy

 

Fb = 0.66 Fy K 

Non-compact Section   
For members meeting the above 
requirements for Lb except that 
their flanges are non-compact. 
i.e. 

170
�Fy

 < 
bf

2tf
 < 

250
 �Fy

 

 

Fb = Fy �0.79 - 0.00076
bf

2tf
�Fy � L 

For non-compact section not 
included above with 
 

Lb ≤ 
200bf

�Fy
 

 

Fb= 0.60 Fy M 

Allowable bending stress in 
tension on compact or non-
compact section with Lb > Lc 

Fb= 0.60 Fy N 

  



  

Types of Stresses & Condition NSCP 
Specification Eq. 

Allowable ending stress in 
compression on compact or non-
compact sections with  Lb > Lc, Fb is 
the larger value of (Eq. O or Eq. P 
and Eq. Q): 

  

When: 
L
rT

 ≥ �
703,270 Cb

Fy
 

And  
L
rT

 ≤ �
3,516,330Cb

Fy
 

 

Fb= 

⎣
⎢
⎢
⎡2
3

- 
Fy �

I
rT
�

2

10.55 x 106Cb 
⎦
⎥
⎥
⎤
Fy 

 
But  

Fb ≤  0.60 Fy 
 

O 

When: 
 
𝐿𝐿
𝑟𝑟𝑇𝑇

 >  �
3,516,330𝐶𝐶𝑏𝑏

𝐹𝐹𝑦𝑦
 

Fb =
1,172,100 Cb 

� I
rT
�
2  ≤  0.6Fy P 

For any value of L/rT  
 
Note: Eq. Q is applicable only to 
sections with compression flange 
that is solid and approximately 
rectangular in cross section and 
that has an area not less than the 
tension flange 

Fb =
82,740 Cb 

�Id
Af
�

 ≤  0.6Fy 

For channels bent about their 
major axis, Fb in compression 

is determine from Eq. Q 

Q 

Bending on Weak Axis of I-shaped 
Members, Solid Bars, and 
Rectangular Plates 

  

Doubly symmetrical I- and H-
shape members with compact 

flanges continuously connected to 
the web and bent about their 
weaker axis; solid round and 

square bars; and solid rectangular 
sections bent about their weaker 

axes 

Fb = 0.75Fy R 

Members with non-compact 
section Fb = 0.60Fy S 



 

Types of Stresses & Condition NSCP 
Specification Eq. 

Bending on Weak Axis of Box 
Members, Rectangular Tubes and 
Circular Tubes  

  

Compact Section Fb = 0.66 Fy T 
Non-compact Section Fb = 0.66 Fy U 

Bearing   
On contact area of milled surfaces 
and ends of fitted bearing 
stiffeners; on projected area of 
pins reamed, drilled, or bored 
holes 

Fp = 0.90Fy V 

On projected area of bolts and 
rivets in shear connections. Fp = 1.50Fu W 

 

GROSS AND NET AREAS 

Gross area 
 
The gross area of a member at any point shall be determined by 
summing the product of the thickness and the gross width of each 
elements as measured normal to the axis of the member. 
 
For angles, the gross width shall be the sum of the widths of the 
legs less the thickness. 

Net Area 
 
The net area An of a member is the sum of the products of the 
thickness and the net width of each element computed as follows: 

1. The width of bolt or rivet hole shall be taken as 1.6mm 
greater than the nominal dimension of the hole. 



 

 

2. In the case of chains of holes extending across a part 
in any diagonal or zigzag line, the net width of the part 
shall be obtained by deducting from the gross width the 
sum of the diameters of all the holes in the chain and 
adding, for each gage space in the chain, the quantity 
 

s2 / 4g  Eq. 3 – 1 
 

Where s = longitudinal center-to-center spacing 
(pitch) of any two consecutive holes, mm 

g = traverse center-to-center spacing (gage) of 
the same two holes, mm 

 
 

 

 

 

 

An = �B - �Holes +�
S2

4g
  � t 

Ae = An ≤85% Ag 

3. For angels, the gross width shall be the sum of the 
widths of the legs less the thickness. The gage for 
holes in opposite legs shall be the sum of the gages 
from back of angles less the thickness 
 
 

g1 

g2 p 

S1 

S2 

B 

Eq. 3-2 

Eq. 3-3 



 

 
 
 
 
 

 

 
 
 S = 100 
 g = 90 + 80 – 10 = 160 

4. The critical net area An of the part is obtained from the 
chain which gives the least net width. 

5. In determining the net area across plug or slot welds, 
the weld metal shall not be considered as a adding to 
the net area. 

 
Effective Net Area 
 
When the load is transmitted directly o each of the cross-sectional 
elements by connectors, the effective net area Ae is equal to the 
net area An. 
 
When the load is transmitted by bolts or rivets through some but 
not all of the cross-sectional elements of the member the effective 
net area Ae shall be computed as:  
 
  Ae = U An  Eq. 3 – 4 
 
Where: An = net area of the member 
             U = a reduction coefficient 

80 
90 

100 

t = 10 

t = 10 



 

When the load is transmitted by welds through some but not all 
of the cross-sectional elements of the member, the effective net 
area Ae shall be computed as:  
 
  Ae = U Ag  Eq. 3 – 4 
 
Where:  Ag = gross area of the member 
 
Unless a large coefficient can be justified by test or other 
recognized criteria, the following values of Ct shall be used in 
computations: 

1. W, M or S shapes with flange width not less than 2/3 
the depth, and structural tees cut from these shapes, 
provided the connection is to the flanges and has no 
fewer than 3 fasteners per line I the direction of stress, 
U = 0.90 

2. W, M or S shapes not meeting the conditions of subs 
paragraph1, structural tees cut from these shapes, 
including has not than fasteners per line in the direction 
of stress, U = 0.85. 

3. All members whose connections have only 2 fasteners 
per line in the direction of stress, U = 0.755. 

 
Riveted and bolted splice and gusset plates and other connection 
fitting subject to tensile force shall be designed in accordance 
with the provisions of Sect. 4.5.1.1, where the effective net area 
shall be taken as the actual net area, except that, for the purpose 
of design calculations, it shall not be taken a greater than 85 
percent of the gross area. 
 



DESIGN OR ANALYSIS OF RIVETED OR BOLTED AXIALLY 
LOADED TENSION MEMBERS 
(CONNECTIONS)  
 
The following stresses must be verified in the design or analysis 
of axially loaded tension connections: 
  
 
 

 

 

           Gross Area          Net Area 
                   Ag          An ≤ 0.85 Ag 

Gross Area, Ag = W x t 
Net Area, An = [W - ∑(holes+1.6)] x t ≤ 85% Ag 
 
1. Tension on Gross Area: 

Actual Stress ft = P Ag⁄   
Allowable Stress, Ft = 0.60 Fy 
 

2. Tension on Net Area:  
Actual Stress, ft = P An⁄  
Allowable Stress, Ft = 0.50 Fu 
 
 
 
 

` 
W 

P 

t t 

H
ol

e 
+ 

1.
6m

m
 

(T
yp

.) 

 

Single Shear 
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3. Shear in Bolts 
Actual Stress, ft = P Av⁄  
Av =  Abolt x n (for single shear) 
Av =  2Abolt x n (for double shear) 
n = number of bolts 
Allowable shearing stress, Fv 
 depends on the type and material of bolts 
 See Table 3 – 9 

 
4. Bearing on the projected area between the bolt and the 

plate: 
 
Actual Stress, fp = P Ap⁄  
 Ap= ∑(Bolt diameter x plate thickness) 
Allowable stress Fp = 1.50 Fu  

 
5. Combined shearing and tearing: 

 
 
 
 
 
 
 
 
 
Allowable shearing stress, Fv = 0.30 Fu 
Allowable tearing stress, Ft = 0.50 Fu 
 

 

P 

Tearing 

Shearing 



 

ECCENTRICALLY LOADED BOLTED/RIVETED 
CONNECTION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Direct Load PDy = Py

n
 & PDx = Px

n
  Eq. 3 – 6 

Moment T = Pe = Py�Xp� + Px�Yp� Eq. 3 – 7 

Px = 
Ty

∑(x2+ y2) 

 

Py = 
Tx

∑(x2+ y2) 

 

Total Load, R = �(Px+ PDx)2 + �Py+ PDy�
2  

 

Xp Y 

e 

P 

Px 

Py 

Px 
c b 

d a 

Px PDx 

R 
Py 

Yp 

Eq. 3 – 8 

Eq. 3 – 9 

Eq. 3 – 10 

 



 

Where n = number of rivets 
   x = x-coordinate of the rivet 
   y = y-coordinate of the rivet 
   Px & Py = load due to moment alone 
   PDx & PDy = load due to axial force alone (direct load) 
 

If the rivets are equidistant from the centroid of the rivet group 
such as those shown below: 
 
 
 
 
 
 
 
 
 
(P X d) n =T  

Load due to moment alone, P = 
T

n x d
               Eq. 3 - 11 

 
 
WELDED CONNECTION 
 
GROOVE WELDS 
 
Effective Area of Groove Welds 
The effective area of groove welds shall be based on the 
following: 
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1. The effective area of a groove welds shall be considered as 
the effective length of the weld time the effective throat 
thickness. 

2. The effective length a groove weld shall be the width of the part 
joined. 

3. The effective throat thickness of a complete penetration groove 
weld shall be the thickness of the thinner part joined. 

4. The effective throat thickness of a partial-penetration groove 
weld shall be as shown in Table 3 – 3. 

5. The effective throat thickness of a flare groove weld when flush 
to the surface of a bar of 90˚ bend in a formed section shall be 
as shown in Table 3 – 4. Random sections of production welds 
for each welding procedure, or such test sections as may be 
required by design documents, shall be used to verify that 
effective throat is consistently obtained. 

6. Larger effective throat thicknesses than those in Table 3 – 3 
are permitted, provided the fabricator can establish by 
qualification that he can consistently provide such larger 
effective throat thicknesses. Qualification shall consist of 
sectioning the weld normal to its axis, at mid – length and 
terminal ends. Such sectioning shall be made on a number of 
combinations of materials sizes representative of the range to 
be used in the fabrication or as required by the designer. 

 
Table 3 – 3:  Effective Throat Thickness of Partial-

Penetration Groove Welds 
Welding 
Process 

Welding 
Position 

Included Angle 
at Root of 

Groove 
Effective Root 

Thickness 



Shielded metal 
arc 

Submerged arc 
All 

J or U Joint 
Depth of chamfer 

Gas Metal Arc Bevel or V joint ≥ 
60˚ 

Flux-cored arc Bevel or V joint < 
60˚ but ≥ 45˚ 

Depth of chamfer 
minus 3mm 

 
Table 3 – 4: Effective Throat Thickness of Flare Groove 

Welds 
Type of Weld Radius (R) of Bar or 

Bend 
Effective Throat 

Thickness 
Flare Bevel Groove All (5/16)R 

Flare V-Groove All (1/2)Rt 
t Use (3/8)R for Gas Metal Arc Welding (Except short circuiting transfer process) 
when R ≥ 12mm 

 
Table 3 – 5: Minimum Effective Throat Thickness of Partial – 

Penetration Groove Welds 
Material Thickness of Thicker Part 

Joined 
Minimum Effective Throat 

Thickness 
To 6 mm inclusive 3 mm 

Over 6 mm to 12 mm 5 mm 
Over 12 mm  to 20 mm 6 mm 
Over 20 mm to 38 mm 8 mm 
Over 38 mm  to 57 mm 10 mm 
Over 57 mm to 150 mm 12 mm 

Over 150 mm  16 mm 
 

Limitations of Groove Weld 
 
The minimum effective throat thickness of a partial-penetration 
groove weld shall be as shown in Table 3 – 5. Minimum effective 
throat thickness is determined by the thicker of two parts joined, 



except that the weld size need not exceed the thickness of the 
thinnest part joined. For this exception, particular care shall be 
taken to provide sufficient preheat for soundness of the weld. 
 
FILLET WELDS 
 
Effective Area 
The effective area of groove welds shall be based on the 
following: 

1. The effective area of fillet welds shall be taken as the 
effective length times the effective throat thickness. 

2. The effective length of fillet welds, except fillet welds in holes 
and slots, shall be the overall length of full-size fillets, 
including returns. 

3. The effective throat thickness of a fillet weld shall be the 
shortest distance from the root of the joint to the face of the 
diagrammatic weld, except that for fillet welds made by the 
submerged arc process, the effective throat thickness shall 
be taken equal to the leg size for 10mm and smaller fillet 
welds, and equal to the theoretical throat plus 3 mm for fillet 
welds larger than 10 mm. 

4. For fillet welds in holes and slots, the effective length shall 
be the length of the centerline of the weld along the center 
of the lane through the throat. In the case of overlapping 
fillets, the effective area shall not exceed the nominal cross-
sectional area of the hole slot in the plane of the faying 
surface. 

Limitation of Fillet Welds 
1. The minimum size of fillet welds shall be as shown in 

Table 3 – 6. Minimum weld size is dependent upon the 
thicker of the two parts joined, except that the weld size 



need not exceed the thickness of the thinner part. For this 
exception particular case shall be taken to provide 
sufficient preheat for soundness of the weld. Weld sizes 
larger than the thinner art joined are permitted if required 
by calculated strength. In the as-welded condition, the 
distance between the edge of the base metal and the toe 
of the weld may be less than 1.6 mm provided the weld 
size is clearly verifiable. 

 
Table 3 – 6: Minimum Size of Fillet Welds 

Material Thickness of Thicker Part 
Joined 

Minimum Size of Fillet Weld 

To 6 mm inclusive 3 mm 
Over 6 mm to 12 mm 5 mm 

Over 12 mm  to 20 mm 6 mm 
Over 20 mm 8 mm 

 
2. The maximum size of fillet welds that is permitted along 

edges of connected parts shall be: 
a. Material less than 6 mm thick, not greater than the 

thickness of the material. 
b. Material 6 mm or more in thickness, not greater than 

the thickness of the material minus 1.6 mm, unless the 
weld is especially designated on the drawings to be 
built out to obtain full-throat thickness. 

3. The minimum effective length of fillet welds designated on 
the basis of strength shall be not less than 4 times the 
nominal size, or else the size of the weld shall be 
considered not to exceed ¼ of its effective length. If 
longitudinal fillet welds are used alone in end connections 
of flat bar tension members, the length of each fillet weld 
shall be not less than the perpendicular distance between 



them the traverse spacing of longitudinal fillet welds used 
in end connections of tension members shall not exceed 
200 mm, unless the member is designed on the basis of 
effective net area. 

4. Intermittent filled welds are permitted to transfer 
calculated stress across a joint or faying surface when the 
strength required is less than that developed by a 
continuous filled weld of the smallest permitted size, and 
to join components of built-up members. The effective 
length of any segment of intermittent fillet welding shall be 
not less than 4 times the weld size, with a minimum of 38 
mm. 

5. In lap joints, the minimum lap shall be 5 times the 
thickness of the thinner part joined, but not less than 25 
mm. lap joints joining plates or bars subjected to axial 
stress shall be fillet welded along the end of both lapped 
parts, except where the deflection of the lapped part is 
sufficiently restrained to prevent opening of the joint under 
maximum loading. 

6. Fillet welds in holes or lots are permitted to transmit shear 
in lap joints or to prevent the buckling or separation of 
lapped parts and to join components of built-up member 
such fillet welds may overlap, subject to the provision of 
the Code. The fillet welds in holes or slots are not to be 
considered plug or slot welds. 

7. Slide or end fillet welds terminating at ends or sides, 
respectively, of parts members shall, wherever 
practicable, be returned continuously around the corners 
for a distance not less than 2 times the normal size of the 
weld. This provision shall apply to side and top fillet welds 
connecting brackets, beam seats ad similar connections, 



on the plane about which bending moments are 
computed. For framing angles and simple end-plate 
connections which depend upon flexibility of the 
outstanding legs for connection flexibility, end returns 
shall not exceed four time the nominal size of the weld. 
Fillet welds that occur on opposite side of a common to 
both welds. End returns shall be indicated on the design 
and details drawings. 

 
PLUG AND SLOT WELDS 
 
Effective Area 
The effective shearing area of plug and slots welds shall be 
considered as the nominal cross-sectional area of the hole or 
slot in the plane of the faying surface. 
 
Limitations of Plug and Slot Welds 
1. Plug or slot welds are permitted to transmit shear in lap 

joints or to prevent buckling of lapped arts and to join 
component parts of built-up members. 

2. The diameter of the hole for a plug weld shall not be less 
than the thickness of the art containing it plus 8 mm,  
rounded to the next larger odd 1.6 mm, nor greater than 
the minimum diameter plus 3 mm or 2 ¼ times the 
thickness of the weld. 

3. The minimum center-to-center spacing of plug welds shall 
be four times the diameter of the hole. 

4. The minimum spacing of lines of slot welds in a direction 
transverse to their length shall be 4 times the width of the 
slot. The minimum center-to-center spacing in a 



longitudinal direction on any line shall be 2 times the 
length of the slot. 

5. The length of slot for a slot weld shall not exceed 10 times 
the thickness of the weld. The width of the slot shall be 
not less than the thickness of the part containing it plus 8 
mm, nor shall it be larger than 2v4 times the thickness of 
the weld. The ends of the slot times shall be semi-circular 
or shall have the corners rounded to a radius not less than 
the thickness of the part containing it, except those ends 
which extend to the edge of the part. 

6. The thickness of plug or slots welds in material 16 mm  or 
less in thickness shall be equal to the thickness of the 
material. In material over 16 mm thick, the thickness of 
the weld shall be at least ½ the thickness of the material 
but not less than 16 mm. 

 
COMBINATION OF WELDS 
 
If two or more of the general types of weld (groove, fillet, plug, 
slot) are combined in a single joint, the effective capacity of 
each shall be separately computed with reference to the axis 
of the group in order to determined allowable capacity of the 
combination. 
 
Mixed Weld Metal 
 
When notch-toughness is specified, the process consumables 
for all weld metal, tack welds, root pass and subsequent 
passes, deposited in a joint shall be compatible to assure 
notch-tough composite weld metal. 
 



Table 3 – 7: Allowable Stresses on Welds 
Type of Weld and Stress Allowable Stress Required Weld 

Strength Leve b, c 

Complete-Penetration Groove Welds 

Tension normal to effective 
area Same as base metal 

“Matching” weld 
metal must be 

used 
Compression normal to 
effective area Same as base metal Weld metal with a 

strength level equal 
to or less than 
“matchmaking” 

weld metal may be 
used. 

Tension and compression 
parallel to axis of weld Same as base metal 

Shear on effective area 

0.3 x nominal tensile strength of weld metal 
(MPa) except shear stress on base metal 
shall not exceed 0.40 x yield stress of base 
metal 

Partial-Penetration Groove Weldsd 

Compression normal to 
effective area 
 

Same as base material 

Weld metal with a 
strength level equal 

to or less than 
“matchmaking” 

weld metal may be 
used 

Tension and compression 
parallel to axis of weld Same as base material 

Shear parallel to axis of weld 

0.3 x nominal tensile strength of weld metal 
(MPa) except shear stress on base metal 
shall not exceed 0.40 x yield stress of base 
metal 

Tension normal to effective 
area 

0.3 x nominal tensile strength of weld metal 
(MPa) except shear stress on base metal 
shall not exceed 0.60 x yield stress of base 
metal 

Fillet Welds 

Shear on effective area 

0.3 x nominal tensile strength of weld metal 
(MPa) except shear stress on base metal 
shall not exceed 0.40 x yield stress of base 
metal 

Weld metal with a 
strength level equal 

to or less than 
“matchmaking” 

weld metal may be 
used 

Tension or compression 
parallel to axis of weld Same as base material 

Plug and Slot Welds 

Shear parallel to faying  

0.3 x nominal tensile strength of weld metal 
(MPa) except shear stress on base metal 
shall not exceed 0.40 x yield stress of base 
metal 

Weld metal with a 
strength level equal 

to or less than 
“matchmaking” 

weld metal may be 
used 

 
 



a. For definition of effective area, see Section 4.14.6 
b. For “matching” weld metal, see Table 4.1.1, AWS D1.1-77 
c. Weld metal one strength level stronger than the “Matching” 

weld metal will be permitted. 
d. See Sect. 4.10.8 for a limitation on use of partial-penetration 

groove welded joints. 
e. Fillet welds and partial-penetration groove welds joining the 

component elements of built-up members, such as flange-to-
web connections, may be designed without regard to the 
tensile or compressive stress in these elements parallel to the 
axis of the welds. 

 
The permissible unit stresses for fillet welds made with E 60 XX - 
, E 70 XX -, and E 80 XX – type electrodes on A 36 the fact that 
the stress in a fillet weld is considered as shear on the throat, 
regardless of the direction of the applied load. Neither plug nor 
slot welds shall be assigned any values in resistance other that 
shear. 
 

Table 3 – 8: Allowable Working Strength of Fillet Welds 
Size of Weld 

 
Allowable Load (kN/mm) 

E 60 xx 
Electrode 
Fu = 60 ksi 

Fu = 414 MPa 
Fv = 0.3 Fu 

Fv =  124 MPa 

E 70 xx 
Electrode 
Fu = 70 ksi 

Fu = 482 MPa 
Fv = 0.3 Fu 

Fv =  145 MPa 

E 80 xx 
Electrode 
Fu = 80 ksi 

Fu = 551 MPa 
Fv = 0.3 Fu 

Fv =  165 MPa 

in mm 

3/16 4.76 0.417 0.488 0.555 
1/4 6.35 0.557 0.651 0.741 

5/16 7.94 0.696 0.814 0.926 
3/8 9.52 0.835 0.976 1.111 
1/2 12.7 1.113 1.302 1.482 
5/8 15.9 1.394 1.630 1.855 
3/4 19.2 1.683 1.968 2.240 

 



 

 

Fillet Weld  
 
        Throat = 0.717 t       Eq. 3 – 12 
 Capacity, P =  Fv (0.707 t L)       Eq. 3 – 13 
 
BALANCING WELD 
 
Angular Section Fillet Welded on a Gusset Plate 
 
 
 
 
 
 
 
  P = 0.707 t L Fv  Eq. 3 – 14 
  L = L1 + L2   Eq. 3 – 15 
  L1 x a = L2 x b  Eq. 3 – 16 
 
 
Angular Section Fillet Welded on a Gusset Plate 
(With Transverse Fillet Weld) 
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  P = 0.707 t L Fv  Eq. 3 – 17 
  L =  L1 +  L2 + L3  Eq. 3 – 18 
  L1 x a = L2 x b = L3 x c Eq. 3 – 19 
 
 
ECCENTRICALLY LOADED WELDED CONNECTION 
 

Direct Load, PD= F
∑L

   Eq. 3 – 20 
Moment, T = F x e   Eq. 3 – 21 

Px= Ty
J

   Eq. 3 – 22 

  Py= Tx
J

   Eq. 3 – 23 

J = ∑ L �L2

12
+ XG

2+YG
2�   Eq. 3 – 24 

 
Total load, R = �(Px)2+(Px+PD )2  Eq. 3 – 24 

 
Where PD= direct load in N

mm
 

            Px &  Py= load due to moment in N
mm

 
           L=length of each weld, mm 
           e = eccentricity, mm 
 

Table 3 – 9: Allowable Stresses on Fasteners, MPa 

Description of Fasteners 
Allowable 
Tensiong 

Ft 

Allowable Shearg (Fv) 
Friction-type Connectionse,i Bearing-

type 
connectio

n 

Stand
ard 
Size 

Holes 

Oversized and 
Short-slotted 

Holes 

Long-
slotte

d 
Holes 

A 502 Grade 1, hot-driven 
rivets 

 

160a    120f 



A 502, Grade 2 & 3, hot-driven 
rivets 

200a    150f 

A 307 Bolts 140a    70 
Threaded parts meeting the 

requirements of Sects. 4.4.1 & 
4.4.4 and A449 bolts meeting 

the requirements of Sect. 4.4.4, 
when threads are not excluded 

from shear planes 

0.33Fu 

a,c,h 

   0.17Fuh 

 

Threaded parts meeting the 
requirements of Sects. 4.4.1 & 
4.4.4 and A449 bolts meeting 

the requirements of Sect. 4.4.4, 
when threads are excluded 

from shear planes 

0.33Fu 

a,h 
   0.22Fuh 

 

A 325 bolts, when treads are 
not excluded from shear planes 

300d 120 100 90 145f 

A 325 bolts, when treads are 
excluded from shear planes 

300d 120 100 90 210f 

A490 bolts, when threads are 
not excluded from shear planes 

370d 150 130 110 190f 

A490 bolts, when threads are 
excluded from shear planes 

370d 150 130 110 280f 

a. Static loading only 
b. Thread permitted in shear lanes 
c. The tensile capacity of the threaded portion of an upset rod, based upon the cross-sectional 

area of its major thread diameter, Ab, shall be larger than the nominal body area of the rod 
before upsetting times 0.60 Fy. 

d. For A325 and A490 bolts subject to tensile fatigue loading, see Appendix B, Sect B3 
e. When specified by the designer, the allowable shear stress, Fv, for friction-type connections 

having a special faying surface conditions may be increased to the applicable value given in 
Appendix E. 

f. When bearing-type connections used to splice tension members have a fastener pattern 
whose length, measured parallel to the line of force, exceeds 1270 mm, tabulated values 
shall be reduced by 20%. 

g. See Sect 4.5.6 
h. See Appendix C, Table 2, for values specific ASTM steel specifications 
i. For limitations on use of oversized and slotted holes, see Sect. 4.23.4. 

 
 
 
 

AXIALLY LOADED COLUMNS & OTHER COMPRESSION 
MEMBERS 
 
Euler’s Stress 
For Hinged-Ended Columns: 
 



 

 

 

 Euler critical load, P = π
2EI

L2   Eq. 3 – 26 

 Euler critical stress, Fa = π2E
(L r⁄ )2  Eq. 3 – 27 

 
For Fixed-Ended Columns: 
 

 Euler critical load, P = 4π2EI

L2   Eq. 3 – 28 

 Euler critical stress, Fa = 4π2E
(L r⁄ )2  Eq. 3 – 29 

 
Where L = unbraced length 
            L/r = maximum slenderness ratio 
 
 
 
NSCP/AISC Specifications 
 

Cc = �2π2E
Fy

  Eq. 3 – 30 

 
 

KL/r = Maximum effective slenderness ratio 
K = effective length factor (See Table 3-10 in Page 255) 
 K = 1 for column hinged at both ends 
 K = 0.5 Fixed-Fixed 
 K = 0.7 Hinge-Fixed 
 

 
 
 



 

Table 3 -10: Effective Length Factors 

 
 

Buckled shape of 
column is shown 

by dashed line 
 

 

 

     

Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0 
Recommended 

design value when 
ideal conditions are 

approximated 
0.65 0.80 1.20 1.00 2.10 2.00 

End conditions 
code 

 
 Rotation fixed and translation fixed 

 
 Rotation free and translation fixed 

 
 Rotation fixed and translation free 

 
 Rotation free and translation free 

 
When KL/r < Cs (short column) 

   

Fa = �1 - 
(KL r⁄ )2

2Cc
2 �

Fy

FS
 

   

FS = 
5
3

+ 
3 (K L  r⁄ )

8 Cc
- 

(K L  r⁄ )3

8 Cc
3  

Eq. 3 – 31 
 
Eq. 3 – 32 
 



 

 

When KL/r > Cc (long column) 
 

Fs = 12 π2E
23 (KL r⁄ )2                        Eq. 3 – 33 

 
 
Allowable Stress on Axially Loaded Bracings and 
Secondary Members where L/r > 120 
 

Fa = 1

1.6- L
200 r

 Fa [by Eq. 3-31 or Eq. 3-33]                    Eq. 3 – 34 

 
 
BEAMS AND OTHER FLEXURAL MEMBERS 
 
These formulas apply to singly or doubly symmetric beams 
including hybrid beams and girders loaded in the plane of 
symmetry. It also applies to channels loaded in a plane passing 
through the shear center parallel to the web or restrained against 
twisting at load points and points of support 
 
ALLOWABLE STRESS ON STRONG AXIS BENDING OF 
I – Shaped Members and Channels 
 
Members with Compact Section 
(See Table 3 – 11 for limiting width – thickness ratio) 
 
 
 
 
 



 

 

 

 
Criteria for Compact Section of I – Shaped members and 
Tees:  
 

Width-thickness ratio, bf

2tf
 ≤ 170

�Fy
            Eq. 3 – 35 

 
Depth-thickness ratio, d

tw
 ≤ 1680

�Fy
            Eq. 3 – 36 

 
For the member with compact section (excluding hybrid beams 
and members with yield points greater than 448 MPa), the 
allowable bending stress in both tension and compression is:  

 
Fb=0.66 Fy      Eq. 3 – 37 

 
provided the flanges are connected continuously to the web or 
webs and the laterally unsupported length of compression flange 
Lb does not exceed Lc , where Lc is the smaller value of Eq. 3 – 38 
and Eq. 3 – 39. 
 

200 bf

�Fy
                              Eq. 3 – 38 

 
137,900

(d Af⁄ ) Fy
                           Eq. 3 – 39 

 
 
Members with non – Compact Section 
(See Table 3 – 11 for limiting width – thickness ratios) 
For members with Lb ≤ Lc except that their flanges are non – 
compact (excluding built-up members and members with yield 



 

 

 

points greater than 448 MPa), the allowable bending stress in 
both tension and compression is 
 

Fb= Fy �0.79-0.000762 bf

2tf
 �Fy�                  Eq. 3 – 40 

 
For members with non – compact section (not included in the 
above) and Lb ≤ 200bf

�Fy
 , the allowable bending stress in both 

tension and compression is:  
 

Fb=0.60 Fy                 Eq. 3 – 41 
 
 
Members with Compact or Non – Compact Section 
With Lb > Lc 
 
Allowable bending stress in tension: 
 

Fb=0.60 Fy                      Eq. 3 – 42 
 
Allowable bending stress in compression: 
The allowable bending stress in compression is determined as 
the larger value of (Eq. 3-43 or Eq. 3-44 and Eq. 3-45, except that 
Eq. 3-45 is applicable only to section with compression flange that 
is solid and approximately rectangular in cross-section and that 
has an area not less than tension flange. For channels, the 
allowable compressive stress is determined from Eq. 3-45.  
 

When �
703,270 Cb

Fy
 ≤ L

rT
 ≤ �

3,516,330 Cb

Fy
  



 

 

 

 

Fb= �2
3
- Fy(I rT⁄ )2

10.55 x 106 Cb
�  Fy ≤0.60 Fy                  Eq. 3 – 43 

 
 

Use the larger value of Eq. 3-45 and Eq. 3-43, but shall be 
less than 0.60 Fy. 

 
 

When L
rT

 > �
3,516,330  Cb

Fy
 

 
𝐹𝐹𝑏𝑏 =  1,172,100 𝐶𝐶𝑏𝑏

(𝐼𝐼 𝑟𝑟𝑇𝑇⁄ )2
 ≤ 0.60 𝐹𝐹𝑦𝑦                   Eq. 3 – 44 

 
Use the larger value of Eq. 3-45 and Eq. 3-43, but shall be 
less than 0.60 Fy. 

 
For any value of L/rT: 
 

𝐹𝐹𝑏𝑏 =  82,740 𝐶𝐶𝑏𝑏
�𝐼𝐼𝐼𝐼 𝐴𝐴𝑓𝑓⁄ �

 ≤ 0.60 𝐹𝐹𝑦𝑦         Eq. 3 – 45 

 
Where: 

bf = flange width, mm 
tf = flange thickness, mm 
d = depth, mm 
tw = web thickness, mm 
Af = area of compression flange = bf tf (mm2) 
I = distance between cross-sections braced against twist and 
lateral displacements of the compression flange mm 



rT = radius of gyration of the section comprising the 
compression flange plus 1/3 of the compression web area 
taken about an axis in the plane of the web mm 
Cb = 1.75 +1.05 (M1 M2⁄ ) + 0.3 (M1 M2⁄ )2 ≤ 2.3  
 M1 = smaller end moment; M2 = larger end moment 
 M1 M2⁄  = (+) for reversed curvature 
 M1 M2⁄  = (-) for single curvature 
Cb = unity (1) if the moment within the unbraced length is 
larger than M1 or M2. For example the simply supported 
beam. 

Allowable Stress on Weak Axis Bending of I – Shaped Members, 
Solid Bars and Rectangular Plates 
See Equations R & S in Table 3 – 2 
 
SHEARING STRESS IN BEAMS 
 
On the Cross-Sectional Area Effective in Resisting Shear: 
 
When h

tw
 ≤ 998

�Fy
 , the allowable shear stress on the overall depth 

time the web thickness (d tw) is:  
   

Fv=0.40 Fy                        Eq. 3 – 46 
 

or V
dtw

 ≤0.40 Fy                  Eq. 3 – 47 

 
 
When h

tw
 ≤ 998

�Fy
 , the allowable shear stress on the clear distance 

between flanges times the web thickness, h tw is: 



 
 

Fv= Fy

2.89
 Cv ≤0.40 Fy                         Eq. 3 – 48 

 
or 0.40 Fy ≥ V

h tw
 ≤ Fy

2.89
 Cv                 Eq. 3 – 49 

 
 
Where: 

Cv = 310,264 kv

Fy (h tw⁄ )2    when Cv is less than 0.80 

Cv = 500
h tw⁄

 �
kv

Fy
 when Cv is more than 0.80 

kv = 4.00+ 5.34
(a h⁄ )2 when a/h is less than 1.0 

kv = 5.34+ 4.00
(a h⁄ )2 when a/h is more than 1.0 

tw = thickness of web, mm 
a = clear distance between transverse stiffeners, mm 
h = clear distance between flanges at the section under 

investigation, mm 
h = d-2tf  
d = overall depth of the beam, mm  

 
COMBINED STRESSES 
 
This section pertains to doubly and singly symmetrical members 
only. Use Eq. 3-31 or Eq. 3-31 (as applicable) for determination 
of Fa and Eq. 3-37 through Eq. 3-45 (as applicable) for 
determination of Fbx and Fby. 
 
 
 



 

 

Axial Compression and Bending 
 
Members subjected to both axial compression and bending shall 
be proportioned to satisfy the following requirements 
 

fa
Fa

+ Cmx fmx

�1- fa
F'ex

� Fbx
+ Cmy fby

�1- fa
F'ey

�
 ≤ 1                 Eq. 3 – 50 

 
   

fa
0.60Fy

+ fbx

Fbx
+ fby

Fby
  ≤ 1                                 Eq. 3 – 51 

 
 
When fa/Fa ≤ 0.15, Eq. 3-52 is permitted in lieu of Eq. 3-50 and 
Eq. 3-51.  
 

fa
Fa

+ fbx

Fbx
+ fby

Fby
  ≤ 1                           Eq. 3 – 52 

 
In Eq. 3 – 50 through Eq. 3 – 52, the subscripts x and y, combined 
with subscripts b, m and e indicate the axis of bending about 
which a particular stress or design properly applies. 
 
Where: 

Fa = allowable axial compressive stress if axial force alone 
existed MPa 

Fb = allowable compressive bending stress if bending moment 
alone existed 

𝐹𝐹′𝑒𝑒 =  12 𝜋𝜋2𝐸𝐸
23 (𝐾𝐾𝐼𝐼𝑏𝑏 𝑟𝑟𝑏𝑏⁄ )2

 = Euler stress divided by a factor of safety, 

MPa (In the expression for F’e Ib is the actual unbraced 



length in the plane of bending and rb is the corresponding 
radius of gyration. K is the effective length factor in the 
plane of bending). As in the case of Fa, Fb and 0.60 Fy, F’e 
may be increased 1/3. 

fa  = computed axial stress, MPa 
fb = computed compressive bending stress at the point under 

consideration, MPa 
Cm = a coefficient whose values is as follows: 

1. For compression members in frames subject to joint 
translation (sidesway), Cm = 0.85 

2. For rotationally restrained compression members in 
frames braced against joint translation and not subject 
to transverse loading between their supports in the 
plane of bending. 

Cm=0.6-0.4 
M1

M2
 but not less than 0.4 

When M1/M2 is the ratio of the smaller to larger 
moments at the ends of that portion of the member 
unbraced in the plane of bending under consideration. 
M1/M2 is positive when the member is bent in reverse 
curvature, negative when bent in single curvature. 

3. For compression members in frames braced against 
joint translation in the plane of loading and subjected to 
transverse loading between their supports, the value of 
Cm may be determined by rational analysis. However, 
in lieu of such analysis, the following values may be 
used: 
a. For members whose ends are restrained 

Cm = 0.85 
b. For members whose ends are unrestrained  

Cm = 1.0 



 

Axial Tension and Bending 
 
Members subjected to both axial tension and bending shall be 
proportioned at all points along their length to satisfy the 
requirements of formula:  
 

fa
Ft

+ fbx

Fbx
+ fby

Fby
  ≤ 1                               Eq. 3 – 53 

 
Where fb is the computed bending tensile stress, fa is the 
computed axial tensile stress, Fb is the allowable bending stress, 
and Ft is the governing allowable tensile stress. 
 
COMPOSITE BEAMS 
 
This section applies to steel beams supporting a reinforced 
concrete slab so interconnected that the beams and the slab so 
interconnected that the beams and the slab act together to resist 
bending. This also includes simple and continuous composite 
beams, constructed with or without temporary shores. 
 
Composite beams may be: 

1. Totally encased beams which depend upon natural 
bond for interaction with the concrete. 

2. Beams with shear connectors (mechanical anchorage 
to the slab) with steel member not necessarily 
encased. 

 
 
 
 



Encased Beams 
  
A beam totally encased in concrete cast integrally with the slab 
may be assumed to be connected to the concrete by natural 
bond, without additional anchorage, provided that: 

1. Concrete cover over beam sides and soffit is at least 
50 mm 

2. The top of the beam is at least 38 mm below the top 
and 50 mm above the bottom of the slab. 

3. Concrete, encasement contains adequate mesh or 
other reinforcing steel throughout the whole depth and 
across the soffit of the beam to prevent spalling of the 
concrete. 

 
Beams with Shear Connectors 
 
Shear connectors must be provided for composite section if the 
steel member is not totally encased in concrete. The effective 
width of concrete flange on each side of the beam centerline shall 
not exceed: 

1. One-eight of the beam span, center-to-center of 
supports: 

2. One-half the distance to the centerline of the adjacent 
beam, or 

3. The distance from the beam centerline to the edge of 
the slab. 
b = effective width of slab on one side of the beam 
 S1 S2 

b2 b1 

Steel Beam Concrete Slab Edge of Slab 



 

From the figure shown: 
b1, is the smallest of: 

1. L / 8, where L is the beam span 
2. S1 / 2 

b2 shall not exceed S2 
 
Shear Connectors 
 
Except in the case of encase beams, the entire horizontal shear 
at the junction of the steel beam and concrete slab shall be 
assumed to be transferred by shear connectors welded to the top 
flange of the beam and embedded in the concrete. For full 
composite action with concrete subjected to flexural 
compression, the total horizontal shear to be resisted between 
the point of maximum positive moment and points of zero 
moment shall be taken as the smaller value using Eq. 3 – 54 and 
Eq. 3 – 55.  
 

Vh = 0.85 f'c Ac  2⁄                           Eq. 3 – 55 
 

and Vh = As Fy 2⁄  
 
Where; f’c = specified compression strength of concrete, MPa 

Ac = the actual area of effective concrete flange, mm2 
As = the area of steel beam, mm2 
Fy = the specified yield strength of steel beam 
 
 
 
 



Table 3 – 11: Limiting Width-Thickness Ration for 
Compression Members 

Steel sections are classified as compact, non-compact, and slender element sections. 
For a section to qualify as compact, its flanges must be continuously connected to the 
web or webs and the width-thickness ratios of its compression elements must not exceed 
the limits values given in this table. 
 
For unstiffened elements, which are supported along one edge only, parallel to the 
direction of compression force, the width shall be taken as follows: 

1. For flanges of I-Shaped members and tees, b is ½ the full nominal width. 
2. For legs of angles and flanges of channels and zees, b is the full nominal 

dimension. 
3. For plates, b is the distance from the free edge to the first row of fasteners or 

line of welds. 
4. For stems of tees, d is the full nominal depth. 

For stiffened elements, i.e., supported along two edges parallel to the direction of the 
compression force the width shall be taken as follows: 

1. For webs of rolled, built-up or formed sections, h is the clear distance between 
flanges. 

2. For webs of rolled, built-up or formed sections, d is the full nominal depth. 
3. For flanges or diaphragm plates in built-up section, b is the distance between 

adjacent lines of fasteners or lines of welds. 
4. For flanges of rectangular hallow structural sections, b is the clear distance 

between webs less the inside corner radius of each side. If the corner radius is 
not known, the flat width may be taken as the total section width minus three 
times the thickness. 

 
For tapered flanges of rolled sections, the thickness is the nominal value halfway 
between the free edge and the corresponding face of the web. 

Description of Element 
Width 

Thickness 
Ratio 

Limiting Width-Thickness Ratios 

Compact Non – Compact 

Flanges of I-Shaped rolled beams 
and channels in flexure b/t 170 �Fy�  250 �Fy�  

Flanges of I-Shaped of welded 
beams in flexure b/t 170 �Fy�  170 �Fy kc

e⁄�  

Outstanding legs if pairs of angels of 
continuous contact; angels or plates 
projecting from rolled beams or 
columns; stiffeners on plate girders 
 

b/t NA 250 �Fy�  

Angels or plates projecting from 
girders, built-up columns or other 
compression members; 
compression flanges of plate girders 

b/t NA 170 �Fy kc⁄�  



Unsupported width of cover plates 
perforated with a succession of 
access holes 

b/t NA 832 �Fy�  

All other uniformly compressed 
stiffened elements, i.e., supported 
along two edges. 

b/t 
h/tw NA 664 �Fy�  

Webs in flexural compression d/t 1680 �Fy�  -- 

h/tw -- 1995 �Fy�  

Webs in combined flexural and axial 
compression 

d/tw 

For fa Fy ≤0.16⁄  
1680

�Fy
�1-3.74 

fa
Fy
� 

-- For fa Fy ≤0.16⁄  

675 �Fy�  

 

h/tw -- 1995 �Fy�  

Circular hallow sections in axial 
compression D/t 22,750 �Fy�  -- 

Circular hallow section in flexure D/t 22,750 �Fy�  -- 

Description of Element 
Width 

Thickness 
Ratio 

Limiting Width-Thickness Ratios 

Compact Non – Compact 

Stems of tees d/t NA 333 �Fy�  

Unstiffened elements simply 
Supported along one edge, such as 
legs of single-angle struts, legs of 
double angle struts with separators 
and cross or star-shaped cross 
sections 

b/t NA 200 �Fy�  

Flanges of square and rectangular 
box and hallow structural sections of 
uniform thickness subject to 
bending or compression; flange 
cover plates and diaphragm plates 
between lines of fasteners or welds. 

b/t 500 �Fy�  625 �Fy�  

a For hybrid beams, use the yield strength of the flange Fyf instead of Fy 
b Assumes net area of plate at widest hole. 
c For design of slender section that exceed the non-compact limits See Section 502.6.2.2. 
d See also Section 506.4.1 
e 𝑘𝑘𝑐𝑐 =  4.05 (ℎ 𝑡𝑡⁄ )0.46⁄  if h/t > 70, otherwise kc = 1.0 

 
 
 



 

 

WEB CRIPPLING 
 
 
 
 
 
 
1992 NSCP 
For Interior Loads 
 

R
(N+2k) tw

 ≤0.75 Fy               Eq. 3 – 56 
 
 
For End Reaction 

 
R

(N+k) tw
 ≤0.75 Fy                  Eq. 3 – 57 

 
Where N = bearing length 

tw = thickness of web 
k = distance from outer face of flange to toe of fillet 

 
2001 NSCP 
 
Local Web Yielding 
 
Bearing stiffeners shall be provided if the compressive stress at 
the web toe of the fillets resulting from concentrated loads 
exceeds 0.66 Fy. 
 

Toe of Fillet 

N + k 

R 

R 

N + 2k 
tw 

k 

k 



 

 

 

 

When the force to be resisted is a concentrated load producing 
tension or compression, applied at a distance from the member 
end that is greater than the depth of the member: 
 

R
(N + 5k) tw

 ≤ 0.66 Fy                 Eq. 3 – 58 
 
 
When the force to be resisted is a concentrated load applied at or 
near the end of the member: 
 

R
(N + 2.5k) tw

 ≤ 0.66 Fy             Eq. 3 – 59 
 
 
Web Crippling 
 
Bearing stiffeners shall be provided in the webs of members 
under concentrated loads, when compressive force exceeds the 
following limits: 

When the concentrated load is applied at a distance not less 
than d/2 from the end of the member:  
 

R=177.2 tw
2 �1 + 3 N

d
 �tw

tf
�

1.5
��Fyw  tf tw⁄                    Eq. 3 – 60 

 
When the concentrated load is applied less than distance d/2 
from the end of the member: 
 

R=89.3 tw
2 �1 + 3 N

d
 �tw

tf
�

1.5
��Fyw  tf tw⁄                 Eq. 3 – 61 

 



Where Fyw = specified minimum yield stress of beam web MPa 
d = overall depth of the member, mm 
tf = flange thickness, mm 
N = bearing length (not less than N for end reactions) 

 
BEARING PLATES 
 
Masonry Bearing (Sect. 4.5.5) 
 
In the absence of Code regulation the following stresses apply: 

On sandstone and limestone……………….Fp = 2.76 MPa 
On brick in cement mortar…………………..Fp = 1.75 MPa 
On the full area of concrete support……….Fp = 0.35 fc 
On less than the full area of concrete 
support……………………….. Fp = 0.35 fc �A2 A1⁄  ≤0.7 f'c   
  
 
 
 

 
 
 
 
 
 
 
 
 
Where f’c = specified compressive strength of concrete, MPa 

A1 

A2 



 

 

A1 = area of steel concentrically bearing on a concrete 
support, mm2 
A2 = maximum area of the portion of the supporting 
surface of concrete that is geometrically similar to and 
concentric with the loaded area,  mm2

 

 
Allowable Bending Stress in Steel Plate 
 

Fp = 0.75 Fy                  Eq. 3 – 62 
 
 
Beam Base Plate 
 
 
 
 
 
 
 
 
 
 
Thickness of plate:  
 

t = �3 fp  n2

Fb
                       Eq. 3 – 63 

 
fb= Load

Bearing Area of Plate
                         Eq. 3 – 64 

 
 

Toe of Fillet 

Base Plate 

n 

t 



 

Where fp = actual bearing stress 
           Fb = allowable bending stress of plates = 0.75 Fy 
 
Column Base Plate 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thickness of plate:  
 

t = �3 fn n2

Fb
                         Eq. 3 – 65 

 
 
Where n is the larger value of x and y 
 
PLASTIC ANALYSIS AND DESIGN 
 
Plastic Neutral Axis 
The plastic neutral axis of a section is the line that divided the 
section into two equal areas. 
 

x 0.8b x 

b 

d 0.95d 

y 

y 

Base Plate 

Concrete 



 

 

 

 
 
 
 
 
 
 
Plastic Section Modulus 
 

Z = ∑Ay = A1 y1+ A2 y2 +…                         Eq. 3 – 66 
 

For rectangular section, Z = bd2

4
                        Eq. 3 – 67 

 
 
Plastic Moment Capacity 
 

Mp = FyZ                             Eq. 3 – 68 
 
 
Shapes Factor 
 

SF = Z
S 

= MP

ME
                       Eq. 3 – 69 

 
For rectangular section, SF = 1.5 

 
Where: S = elastic section modulus 

ME = elastic moment capacity 

Me = 
FyI
c

= 
Fy

S
 

Y1 

Y2 

A2  = A1 

A1 

Plastic NA 



TIMBER DESIGN 
 
BASIC CODE REQUIREMENTS 
 
Definition 
Blocked Diaphragm is diaphragm in which all sheathing edges 

not occurring on framing members are supported on framing 
members are supported on and connected to blocking. 

Convention Light-Frame Construction is a type of construction 
whose primary structural elements are formed by a system of 
repetitive wood-framing members. 

Diaphragm is a horizontal or nearly horizontal system acting to 
transmit lateral forces to the vertical resisting elements when 
the term diaphragm is used, it includes horizontal bracing 
systems. 

Fiberboard is a fibrous-felted homogeneous panel made from 
lignocellulosic fibers (usually wood or crane) having a density 
of less than 497kg/m3 but more than 160 kg/m3. 

Glued Built-Up Members are structural elements, the sections 
of which are composed of built-up lumber, wood structural 
panels or wood structural panels in combination with lumber, 
all parts bonded together with adhesive. 

Grade (Lumber), the classification of lumber in regard to strength 
and utility in accordance with the grading rules of an approved 
lumber grading agency. 

Hardboard is a fibrous-felted, homogeneous panel made from 
lignocellulosic fibers consolidated under heat and pressure in 
a hot press to a density not less than 497 kg/m3. 

Nominal Size (Lumber), the commercial size designation of 
width and depth, in standard sawn lumber grades, somewhat 



larger than the standard net size of dressed lumber. In 
accordance to Philippine National Standards (PNS). 

Normal Loading, a design load that stressed a member or 
fastening to the allowable stress tabulated in this chapter. This 
loading may be applied for the remainder of the life of the 
member or fastening. 

Particleboard is a manufactured panel product consisting of 
particles of wood fibers bonded together with synthetic resins 
or other suitable bonding system by as bonding process, in 
accordance with approved nationally recognized standard. 

Plywood is a panel of laminated veneers conforming to 
Philippine National standards (PNS) “Construction and 
Industrial Plywood” and UBS Standard 23-3, “Performance 
Standard for Wood-based Structural-User Panels”. 

Rotation is the torsional movement of a diaphragm about a 
vertical axis. 

Sub diaphragm is a portion of a larger wood diaphragm 
designed to anchor and transfer local forces to primary 
diaphragm struts and the main diaphragm. 

Treated Wood, is wood treated with an approved preservative 
under treating and quality control procedures. 

Wood on Natural Resistance to decay or Termites is the 
heartwood of the species set forth below. Corner sapwood is 
permitted on 5 percent of the pieces provided 90 percent or 
more of the width of each side on which it occurs is heartwood. 
Recognized species are: 

 Decay resistant: Narra, Kamagong, Dao, Tangile. 
 Termite resistant: Narra, Kamagong. 
Wood Structural Panel is a structural panel product composed 

primarily of wood and in meeting the requirements of the 
Philippine National Standards (PNS). Wood structural panels 



include all veneer plywood, composite panels containing a 
combination of veneer and wood-based material and mal-
formed panel such as oriented stranded board and wafer 
board. 

 
Duration of Load 
 
Values for wood and mechanical fastenings (when the worst 
determines the load capacity) are subjected to the following 
adjustments for the various duration of loading. 

1. Where a member is fully stressed to the maximum 
allowable stress either continuously or cumulatively for 
more than 10 years under the conditions of maximum 
design load, the values shall not exceed 90 percent of 
those in the tables. 

2. When the accumulated duration of the full maximum 
load during the life of the member does not exceed the 
period indicated below, the values may be increased in 
the table as follows: 

25% for seven days duration, as for roof loads 
33.33% for earthquake 
33.33% for wind (for connections and fasteners) 
60% for wind (members only) 
100% for impact 

The foregoing increases are not cumulative. For 
combined duration of loadings the resultant structural 
members shall not be smaller than the required for the 
longer duration of loading. 
The duration of load factors in this item shall not apply 
to compression-perpendicular-to-grain design values 



 

based on a deformation limit, or to modulus of 
elasticity. 
 

3. Values for normal loading conditions may be used 
without regard to impact if the stress induced by impact 
does not exceed the values for normal loading 

 
Size Factor Adjustment 
When the depth of a rectangular sawn lumber bending member 
125mm or thicker exceeds 300mm, the bending values, Fb1 shall 
be multiplied by the size factor, C1 as determined by: 
 

Cf = �
300
d
�

1
9

                                 Eq. 4 − 1 

 
Where CF = size factor 
            d = depth of beam in mm 
For beams of circular cross section that have a diameter greater 
than 340mm, 300mm or larger square beams loaded in plane of 
the diagonal, the size factor CF may be determined on the basis 
of an equivalent conventionally loaded square beam of the same 
cross-sectional area. 
Size factor adjustments are cumulative with form factor 
adjustments, except for lumber I-beam and box-beams, but are 
not cumulative with slenderness factor adjustments. The size 
factor adjustment shall not apply to visually graded lumber 50mm 
to 100mm thick or to machine- stress-rated lumber. 
 
 
 



 

Slenderness Factor 
 
When the depth of a bending member exceeds its breadth lateral 
support may be required and the slenderness factor Cs shall be 
calculated by:  
 

Cs = �
Ie d
b2                                      Eq. 4 − 2 

 
Where Cs = slenderness factor 
le = effective length of beam, mm from Table 4-1 
d = depth of beam, mm 
b = breadth of beam, mm 
 

Table 4 – 1: Effective Length of Beams 
Type of Beam Span and Nature of 

Load L 

Single-span beam, load concentrated 
at the center 1.61 Lu 

Single-span beam, uniformly 
distributed load 1.92 Lu 

Single-span beam, equal end 
moments 1.84 Lu 

Cantilever Beam, Load concentrated 1.06 Lu 
Cantilever Beam, Load concentrated 

at unsupported end 1.69 Lu 

Cantilever beam,  uniformly distributed 
load 1.69 Lu 

Cantilever beam, uniformly distributed 
load with concentrated load at 

cantilever end 
1.92 Lu 

Lu = unsupported length of beam, mm 
 

 



The effective lengths le in Table 4-1 are based on Lu/d ratio of 17. 
For other Lu/d ratios, these effective lengths may be multiplied by 
a factor equal to 0.85 + 2.55/( Lu/d) except that this factor shall 
not apply to a single –span beam with equal end moments (le = 
1.84 Lu) or to a single span or cantilever with any load (Ie = 1.92 
Lu). 
 
Unsupported Length, Lu 
 

When the compression edge of a beam is supported throughout 
its length to prevent its lateral displacement, and the end at points 
of bearing have lateral support to prevent rotation, the 
unsupported length Lu may be taken as zero. 
 
When lateral support is provided to prevent rotation at the points 
of end bearing but no other lateral support is provide throughout 
the length of the beam, the unsupported length Lu is the distance 
between such points of end bearing or the length of the cantilever. 
 

When a beam is provided with a lateral support to prevent 
rotational and lateral displacement at intermediate points as well 
as the ends, unsupported length Lu is the distance between such 
points of intermediate lateral support. 
 
FLEXTURAL STRESS 
 
When Cs ≤ 10 

When the slenderness factor Cs does not exceed 10, the full 
allowable unit stress in bending Fb may be used. 

 
 



 

 

When Cs > 10 and Cs ≤ Ck  
When the slenderness factor Cs is greater than 10 but does not 
exceed Ck the allowable unit stress in bending F’b shall be: 

 

F'b= Fb �1- 1
3

 �Cs

Ck
�

4
�                                      Eq. 4 – 3 

 
When Cs > Ck and Cs < 50 

When the slenderness factor Cs is greater than Ck but less than 
50, the allowable unit stress in bending F’b shall be: 
 

F'b= 
0.438 E

Cs
2                                 Eq. 4 –  4 

 
In no case shall Cs exceed 50. 
Where:  Ck = 0.811 �𝐸𝐸/𝐹𝐹𝑏𝑏 

E = modulus of elasticity 
Fb = allowable unit stress for extreme fiber in bending 
F’b = allowable unit stress for extreme fiber in bending, 

adjusted for slenderness. 
 

Form Factor Adjustments (for non-prismatic members) 
 
The allowable unit stress in bending for non-prismatic members 
shall not exceed the value established by multiplying such stress 
by the form factor Cf determined as follows: 
 

BEAM SECTION FORM FACTOR (Cf) 
Circular 1.180 

Square (with diagonal 
vertical) 1.414 



 

Lumber I Beams and 
Box Beam 

0.81 �1+ �
� d

25.4�
2
+143

� d
25.4�

2
+88

-1�  Cs�        Eq. 4 – 5 

 
 

Cg = p2 �6 - 8p + 3p2�(1 - q) + q                                     Eq. 4-6 
 
Where Cf = form factor 

Cg = support factor 
p = ratio of depth of compression flange to full depth of 

beam 
q = ratio of thickness of web or webs to the full width of 

beam 
 

The form factor adjustment shall be cumulative with the size 
factor adjustment, except for the lumber l Beams and Box Beams. 
 
Modulus of Elasticity Adjustment 
 
The use of average modulus of elasticity values are appropriate 
for the design of normal wood structural members and 
assemblies. In special applications where deflections critical to 
the stability of structures or structural components, and where 
exposed to varying conditions, the average the average values of 
the modulus of elasticity E for lumber as follows: 

Visually graded sawn lumber, Cv = 0.25 
Machine stress-rated sawn lumber, Cv = 0.11 

The average modulus of elasticity E values listed in the Table 
shall be multiplied by 1 - Cv , or  1 – 1.65 Cv to obtain a modulus 
of elasticity E value exceeded by 84 percent or 95 percent 
individual pieces, respectively. 
 



DESIGN OF HORIZONTAL MEMBERS 
 
Beam Span 
 
For simple beams, the span shall be taken as the distance from 
face to face of support, plus one half the required length of 
bearing at each end; for continuous beams, the span is the 
distance between centers of bearings on support over which the 
beam is continuous 
 
Flexure 
 

Circular Cross Section 
 
A beam of circular cross section may be assumed to have the 
same strength in flexure as a square beam having the same 
cross-sectional area. If a circular beam is tapered, it shall be 
considered a beam of variable cross section 
 
Notching 
 
If possible, notching of beams should be avoided. Notches in 
sawn lumber bending members shall not exceed one-sixth the 
depth of the member and shall not be located in the middle 
third of the span. Where members are notches at the ends, the 
notch depth shall not exceed one-fourth the beam-depth. The 
tension side of the sawn lumber bending members of 100mm 
or greater nominal thickness shall not be notched except at 
ends of members. Cantilevered portions of beams less than 
100mm in normal thickness shall not be notched unless the 



 

 

reduced section properties and lumber defects are considered 
in the design. 
 

Horizontal Shear 
 
The maximum horizontal shear stress in a solid-sawn wood shall 
not exceed:  
 

fv = 
3V
2bd

                              𝐸𝐸𝐸𝐸. 4 − 7 

 
The actual unit shear fv shall not exceed the allowable for the 
species and the grade as given in Table 4-3 adjusted for duration 
of loading.  
 
When calculating the shear force, V, distribution of load to 
adjacent parallel beams by flooring or other members may be 
considered, and all loads within a distance from either support 
equal to the depth of the beam may be neglected for beams 
support by full bearing on one surface and loads applied to the 
opposite surface. 
 
Horizontal Shear in Notched Beams 
 
When rectangular-shaped girder, beams or joists are notched at 
points of support on the tension side, they shall meet the design 
requirements of that section in bending and in shear. The 
horizontal shear stress at such point shall not exceed:  
 

fv = 
3V
2bd

 �
d
d'
�                               𝐸𝐸𝐸𝐸. 4 − 8 



 

 

 
Where: d = total depth of beam 

d’ = actual depth of beam of notch 
 

When girder, beams or joists with circular cross section are 
notched at points of support on the tension side, they shall meet 
design requirements of that section in bending and in shear. The 
actual shear stress at such point shall not exceed:  
 

fv = 
3V

2 An
 �

d
dn
�                                  𝐸𝐸𝐸𝐸. 4 − 9 

 
Where: An = cross sectional area of notched member 

d = total depth of beam 
d’ = actual depth of beam of notch 

 
When girder, beams or joists with circular cross section are 
notched at points of support on the compression side, they shall 
meet design requirement for that net section in bending and in 
shear. The requirement for that net section in bending and in 
shear. The shear at such point shall not exceed the value 
calculated by 
 

V= 
2
3

 Fv b �d - 
d-d'

d'  e�                       𝐸𝐸𝐸𝐸. 4 − 10 

 
Where: d = total depth of beam 

d’ = actual depth of beam of notch 
e = distance notch extends inside the inner edge of support 
 



 

 

The shear for the notch on the compression side shall be further 
limited to the value determined for a beam of depth d’ if e exceeds 
d’. 
 
Design of Joints in Shear 
 
Eccentric connector and bolted joints and beams support by 
connectors or bolt shall be designed so that fv in Eq. 4-11 does 
not exceed the allowable unit stresses in horizontal shear.  
 

fv= 
3V

2bde
                              𝐸𝐸𝐸𝐸. 4 − 11 

 
Where: de (with connectors) = the depth of the member less the 

distance from the unloaded edge of the member to the 
nearest edge of the nearest connector 

de (with bolts or lag screws) = the depth of the member less 
the distance from the unloaded edge of the member to 
the nearest edge of the member to the center of the 
nearest bolt or lag screw. 

 
Allowable unit stresses in shear for joint involving bolts or 
connectors loaded perpendicular to grain may be 50 percent 
greater than the horizontal shear values as set forth in Table 4-3 
and, provided that the joint occurs at least five times the depth of 
the member from its end, the included shear stress is calculated 
by:  
 

fv = 
3V

2bde
 �

d
de
�                            𝐸𝐸𝐸𝐸. 4 − 12 



 

 

and the 50 percent increase in design values for shear in joints 
does not apply. 
 
Compression Perpendicular to Grain 
 
In application where deformation is critical, Eq. 4-13 shall be used 
to calculate the compression- perpendicular-to-grain design 
values.  
 

Fc⊥
'= 0.73 Fc⊥                     𝐸𝐸𝐸𝐸. 4 − 13 

 
Where:  Fc+  = compression perpendicular-to-grain values from 
Table 4-3 

Fc+ ‘ = critical compression-perpendicular-to-grain value 
 

For bearing less than 150mm in length and not nearer than 75mm 
to the end of a member, the maximum allowable load per square 
mm may be obtained by multiplying the allowable unit stresses in 
compression perpendicular to grain factor given by:  
 

Cb = 
Ib+9.5

Ib
                           𝐸𝐸𝐸𝐸. 4 − 14 

 
where lb is the length of bearing in mm measured along the grain 
of the wood. 
 
The multiplying factors for indicated length of bearing on such 
small areas plates and washers may be: 
 

Length of 
bearing (mm) 13 25 38 50 75 100 150 or 

more 



Factor 1.75 1.38 1.25 1.19 1.13 1.10 1.00 
 
In using the preceding equation and table for round washers or 
bearing areas, use length equal to the diameter. 
 
Lateral support 
 
Solid-sawn rectangular lumber beams, rafter and joist shall be 
supported laterally to prevent rotation or lateral displacement in 
accordance with the following: 
 
If the ratio of depth to thickness, based on nominal dimensions, 
is: 
 

1. Two to 1, no lateral support is required. 
2. Three to 1 or 4 to 1, the ends shall be held in position, 

as by full-depth solid blocking, bridging, nailing or 
bolting to other framing members, approved hangers or 
other framing members, approved hangers or other 
acceptable means 

3. Five to 1, one edge shall be held in line for its entire 
length. 

4. Six to 1, bridging, full-depth solid blocking or cross 
bracing shall be installed at intervals not exceeding 2.4 
meters unless 
4.1 Both edges of the member are held in line or, 
4.2 The compression edge of the member is 

supported throughout its length to prevent lateral 
displacement, as by adequate sheathing or sub 
flooring, and the ends and all points of bearing 
have lateral support to prevent rotation. 



5. Seven to 1, both edges shall be held in line for their 
entire length. 

If a beam is subject to both flexure and compression parallel to 
grain, the ratio maybe as much as 5 to 1 if one edge is held firmly 
inline. If under any combination of load the unbraced edge of the 
member is in tension, the ratio may be 6 to 1. 
 
 
COLUMN DESIGN  
 
Column Classifications 
 
Simple Solid-Wood Columns 
 

Simple column consist of a single piece or of pieces properly 
glued together to form a single member. 

 
Spaced Column, Connector Joined 
 

Spaced columns are formed of two or more individual 
members with their longitudinal axes parallel, separated at the 
ends and middle points of their length by blocking and joined 
at the ends by timber connectors capable of developing the 
required shear resistance. 
 

Simple Solid-Column Design 
 
The effective column length le shall be used in design Equations 
given in this section. The effective column length, le shall be 
determined in accordance with good engineering practice. Actual 



column length, l, may be multiplied by the factors given in Table 
4-2 determine effective column length le (le = Ke l) 
 

Table 4 – 2 Effective Length factors, Ke 

 
 

Buckled shape of 
column is shown by 

dashed line 
 

 

 

     

Theoretical K value 0.5 0.7 1.0 1.0 2.0 2.0 
Recommended 

design value when 
ideal conditions are 

approximated 

0.65 0.80 1.20 1.00 2.10 2.00 

End conditions code 

 
 Rotation fixed and translation fixed 

 
 Rotation free and translation fixed 

 
 Rotation fixed and translation free 

 
 Rotation free and translation free 

 
Allowable unit stresses in N per mm2 of cross-sectional area of 
square or rectangular simple solid columns shall be determined 
by the following formulas, but such unit stresses shall not exceed 
values for compression, parallel to grain Fc in Table 4-3 adjusted 
in accordance with provision of this section. 



 

 

 

F'c= Fc
* �

1+ α
2c'

- ��
1+ α
2c' �

2

- 
α
c'  �                         Eq. 4-15  

 
Where α= FcE

Fc
*  

c’ = 0.8 for sawn lumber & 0.85 for round timber pile 

FcE = 
KcE E'
(Ie d⁄ )2 

Fc
* = tabulated compression design value multiplied by 

all of the applicable adjustment factors 
KcE = 0.3 for visually graded lumber 
KcE = 0.418 for products such as machine stress rated 
sawn lumber 
 

Tapered Columns 
 
When designing a tapered column with a rectangular cross-
section, tapered at one end or both ends, the representative 
dimensions, drep for each face of the column shall be: 
  
      drep= dmin+ �dmax - dmin� [a - 0.15 (1- dmin dmax⁄ )]         Eq. 4 –16 
 
 
Where: dmin = minimum dimension for that face of the column 

 dmax = maximum dimension for that face of the column 
 

Support conditions: 



 

 

Large end fixed, small end unsupported. 
 a=0.70 
Small end fixed, large end unsupported. 
 a=0.30 
Both ends supported: 

Tapered toward one end.  
 a=0.50 
Tapered toward both ends.  A=0.70 
 

For all other support conditions 
 

d = dmin + 
dmax - dmin 

3
                              𝐸𝐸𝐸𝐸. 4 − 17 

 
The design of a column of round cross-section shall be based on 
the design calculation for a square column of the same cross-
sectional area and having the same degree of taper. 
 
COMBINED FLEXURE AND AXIAL LOAD 
 
Flexure and Axial Tension 
 
Members subjected to both flexure and axial tension shall be so 
proportioned that 
 

ft
Ft'

 + 
fb

Fb
*   ≤ 1.0                      𝐸𝐸𝐸𝐸. 4 − 18 

and 
fb  −  ft 

Fb
**                         𝐸𝐸𝐸𝐸. 4 − 19 

 



 

Where: Fb
* = tabulated bending design value multiplied by all 
applicable adjustment factors except CF 

 Fb
** = tabulated bending design value multiplied by all 

applicable adjustment factor except CF 

 ft’ = allowable tension design value parallel to grain. 
 fb = actual unit stress for extreme fiber in bending 
 

Flexure and Axial Compression 
 
Members subjected to both flexure and axial compression shall 
be proportioned that 
 

fc
F'c

+ 
fbx

F'bx  −  Jfc
 ≤ 1.0                                   Eq. 4-20 

J =  
Ie d⁄ -11

K-11
                                                    𝐸𝐸𝐸𝐸. 4 − 21 

K = 0.671 �
E
Fc

                                                     𝐸𝐸𝐸𝐸. 4 − 22 

 
Where 0 ≤ J ≤ 1.0 
 
F’c and K shall be determined in accordance with Eq. 4-15 except 
(1) when checking the design in the plane of bending the 
slenderness ratio, le/d, in the plane of bending shall be used to 
perpendicular to the plane of bending shall be used to calculate 
F’c and J shall be set equal to zero. 
 
 
 
 



 

Spaced columns 
 
In the case of spaced columns, this combined stress formula 
maybe applied only if the bending is in a direction parallel to the 
greater d of the individual member. 
 
Truss Compression Chords 
 
Effect of buckling of a 50mm by 100mm or smaller truss 
compression chord having effective buckling lengths of 2.40 m or 
less and with 9 mm or thicker plywood sheathing nailed to the 
narrow face of the chord in accordance with the appropriate 
standards shall be determined from the formula 
 

CT = 
1 + 0.62 Ie 

E0.05
                        𝐸𝐸𝐸𝐸. 4 − 23 

 
Where: CT = buckling of the stiffness factor 

 CT = 0.819E for machine-stress-rated lumber 
 Ie = effective buckling length used in design of chord for 

compression loading 
 E0.05 = 0.589E for visually graded lumber 
 E = Modulus of elasticity from Table 4-3, MPa 
 

The values of CT is determined from this equation are for wood 
seasoned to a moisture content of 19 percent or less at the time 
the plywood is nailed to the chord . For wood that is unseasoned 
at the time of plywood attachment, CT shall be determined from 
Eq. 4-24:  
 



 

 

 

CT = 
1 + 0.33 Ie 

E0.05
                               𝐸𝐸𝐸𝐸. 4 − 24 

 
For chords with an effective buckling length greater than 2.40 m, 
CT shall be taken as the value for a chord having an effective 
length of 2.40 m. 
 
The buckling stiffness factor does not apply to short columns or 
trusses used under wet conditions. The allowable unit 
compressive stress shall be modified by the buckling stiffness 
factor when a truss chord is subjected to combined flexure and 
compression and the bending moment in the direction that 
induces compression stresses in the chord face to which the 
plywood is attached. 
 
The buckling stiffness factor CT shall apply as follows:  
 
Short column (Ie/d ≤ 11) 
 

F'c = Fc                           𝐸𝐸𝐸𝐸. 4 − 25 
 
Intermediate column ( 11 < Ie/d < K )  
 

K =  0.671 �CT
R
Fc

                              𝐸𝐸𝐸𝐸. 4 − 26 

F'c = Fc �1- 
1
3
�

Ie d⁄
K

�
4

�                     𝐸𝐸𝐸𝐸. 4 − 27 

 



 

 

Long column (Ie/d ≥ K) 

  

F'c = 
0.30 E CT

(Ie d⁄ )2                       𝐸𝐸𝐸𝐸. 4 − 28 

 
 
Compression at an Angle to Grain 
 
The allowable unit stress in compression at an angle of load to 
grain between 0o to 90o shall be computed from the Hankinson’s 
Equation as follows:    
 

Fn= 
FcFc⊥

Fc sin2 θ+ Fc⊥cos2 θ
                                 𝐸𝐸𝐸𝐸. 4 − 29 

 
Fc shall be adjusted for duration of load before use in Hankinson’s 
Formula. Values of Fn and Fc+ are not subjected to duration of load 
modifications. 
 
TIMBER CONNECTORS AND FASTENERS 
 
Timber connectors and fasteners may be used to transmit forces 
between wood members and between wood and metal members. 
The allowable loads and installation of timber connectors and 
fasteners shall be in accordance with the tables as provided in 
this Chapter. 
 
 
 



Bolts 
 
Safe loads in kN for bolts in shear in seasoned lumber shall not 
exceed the values set forth in Table 4-4. 
 
Allowable shear values used to connect a wood to concrete or 
masonry are permitted to be determined as one half the tabulated 
double shear values for a wood member twice the thickness of 
the member attached to the concrete or masonry. 
 
The loads given in Table 4-4 are for a joint consisting of three 
members. The bolts are in double shear. The length of the bolt l, 
is the thickness of the main member. 
 
 
NAILS AND SPIKES 
 
Safe lateral strength 
 
A common wire nail driven perpendicular to grain of the wood. 
When used to fasten wood members together, shall not be 
subjected to a greater load causing shear and bending than the 
safe lateral strength of the wire nail or spike as set forth in the 
Table. 
 
A wire nail driven parallel to the grain of the wood shall not be 
subjected more than two thirds of the lateral load allowed when 
driven perpendicular to the grain. Toenails shall not be subjected 
more than five sixths of the lateral load allowed for nails driven 
perpendicular to the grain. 
 



Safe resistance to withdrawal 
 
A wire nail driven perpendicular to grain of wood shall not be 
subjected to a greater load, tending to cause withdrawal than the 
safe resistance of the nail to withdrawal as set forth in the Table. 
 
Spacing and penetration 
 
Common wire nails shall have penetration into the piece receiving 
the point as set forth in the Table. Nails or spikes for which the 
wire gauges or lengths are not set forth in the Table shall have a 
required penetration of not less than 11 diameters, and allowable 
loads may be interpolated. Design values shall be increased 
when the penetration of nails into the member holding the point 
is larger than the required by this item. 
 
For wood-to-wood joints, the spacing center to center of the nails 
in the direction of stress shall not be less than one half of the 
required penetration. Edge or end distances in the direction of 
stress shall not be less one half of the required penetration. All 
spacing and edge and end distances shall be such as to avoid 
splitting of the wood. 
 
Holes for nails, where necessary to prevent splitting, shall be 
bored of a diameter smaller than that of the nails 
Joist hangers and Framing Anchors 
Connections depending upon joist hangers or framing anchors, 
ties and other mechanical fastenings not otherwise covered may 
be used where approved. 
 
 



Miscellaneous Fasteners 
 
Drift bolts or Drift pins 
 
Connections involving the use of drift bolts or pins, wood and 
screws and lag screws shall be designed in accordance with the 
provision set forth in this chapter 
 
Withdrawal Design Values 
 
Drift bolt and drift pin connections loaded in withdrawal shall be 
designed in accordance with good engineering practice. 
 
Lateral Design Values 
 
Allowable lateral design values for drift bolts and drift pins driven 
in the side grain of wood shall not exceed 75 percent of the 
allowable lateral design values for common bolts of the same 
diameter and length in main member. Additional penetration of 
pin into members should be provided in lieu of the washer, head 
and nut on a common bolt. 
 
Spike grids 
 
Wood-to-wood connections involving spike grids for lateral load 
transfer shall be designed in accordance with good engineering 
practice. 
  



SURVEYING AND TRANSPORTATION ENGINEERING 
 
UNITS OF MEASUREMENT 
 
Most-used Equivalents in Survey Works: 
 

1 rod = 1 pole = 1 perch = 16.5 ft 
1 engineer’s chain = 100 ft = 100 links 
1 Gunter’s chain = 66ft 
 = Gunter’s links (lk) 
 = 4 rods =  1

80
 mile 

1 acre = 100,000 sq. (Gunter’s) links = 43, 560 ft2 

1 rood = 1 4�  acre = 40 rods2 

1 hectare = 10,000 m2 = 2.471 acres 
1 arpent = about 0.85 acre 
1 statute mile = 5280 ft = 1609.35 m 
1 mi2 = 640 acres 
1 nautical mile = 6080.27 ft = 1853.248 m 
1 fathom = 6 ft 
1 cubit = 18 in 
1 vara = 33 in 
1 degree = 1

360
 circle = 60 min = 3600 s 

1 grad (grade) = 1
400

 circle = 1
100

 quadrant 

1 mil = 1
6400

 circle = 1
100

 quadrant 
1 military pace = 2.5 ft 
 
 
 
 



 

 

THEORY OF ERRORS 
 
When a number of measurement of the same quantity have been 
made, they must be analyzed on the basis of probability and the 
theory of errors.  
After all systematic (cumulative) errors and mistakes have been 
eliminated random (compensating) errors are investigated to 
determine the most probable value (mean) and other critical 
values. 
 
MOST PROBABLE VALUE 
 

mpv, X� = 
∑X
n

 

 
 Where : ∑𝑋𝑋 = sum of all individual measurements 

n = total number of measurements made 
 
Residual, v 
Residual or deviation is the difference between any measured 
value of a quantity and its most probable value, 
 

v =  X − x � 
 
PROBABLE ERROR 
 
The probable error is a quantity which, when added to and 
subtracted from the most probable value, defines  range within 
which there is fifty percent chance that the true value of the 
measured quantity lies inside (or outside) the limits this set. 
 



 

 

 

 

Probable Error of any Single Measurement 
 

PEs =  ±0.6745 �
∑ v2

n-1
 

 
Probable Error of the Mean: 
 

PEm =  ±0.6745 �
∑ v2

n (n-1) 

 
Where n = number of observations 

∑ v2 = summation of the squares of the residuals 
 
INTERRELATIONSHIP OF ERRORS 
 
Sum of Errors 
 
Probable error of the sum 
 

PEs = ±�PE1
2+ PE2

2+…+PEn
2 

 
Where 𝑃𝑃𝑃𝑃1, etc =  probable error of each measurement 
Product of Errors 
 
Probable error of the product 
 

PEs =  ±�(Q1 PE1)2+ (Q2 PE2)2  



 

Where: Q1, Q2 = measured quantities 
PE1, PE2 = probable error corresponding to each 
quantity measured. 
 

Precision 
 

Precision = 
PEm

mpv
 

 
 
Standard Deviation 
 
Example: Given the following data: 

- 5, 7, 2, 3, 5, 2, 7, 2, 12 
 

The MEDIAN is the middle value when all data are arranged in 
decreasing or increasing order 
 -5, 2, 2, 2, 3, 5, 7, 7, 12  (9 terms) 
 
The median is the 5th term = 3 
 
Note: When there is an even number of values, the median is defined as 
the mean (average) of the middle two values. 
 
The MODE is the value that occurs most frequently. The value “2” occurs 
three times, therefore, is the mode. 
 
The RANGE is the difference between the maximum and minimum 
values. 

Range = 12-(-5)=17 
 
The VARIANCE is defined by:  



 

 

 

 

Variance = 
∑�X- X��2

n
= 
∑ v2

n
 

 
The STANDARD DEVIATION is 
 

SD = √variance = �
∑�X- X��2

n
 

 
Where: X =  value of an observation 

𝑋𝑋� = most probable value  =  ∑𝑋𝑋
𝑛𝑛
 

 
MEASUREMENT OF DISTANCE 
 
Pacing 
 

PF = 
Distance measured

Average pace
 m/pace 

Average pace = 
∑Paces

no.of observation
 

 
 
Stadia Measurement 
 

D =  f /i S cosθ+ (f+c)=k S cosθ  + (f+c ) 
H=D cos θ          V=D sin θ 

 
For horizontal line of sight 𝜃𝜃 =  0° 
 
 



 

 
 

 

 

 

 

 

 

 

 

Where:  
f/I = k = stadia interval factor (equal to 100 for most instruments) 
S = stadia constant  
f + c = stadia constant (equal to zero for internal focusing) 
θ = angle of inclination of the line of sight 
 

D = 
s

2 tan ( θ
2 )

 

 
For S = 2 m 
 

s 

c  

v 

b' 

d 

a 

𝜃𝜃 

𝜃𝜃 

D 

f + c 
f  

H 



 

 

 

D =
1

tan ( θ
2 )

 =  cot
θ
2

 

 
S = length of bar (usually 2 m) 
𝜃𝜃= angle subtended by the bar 
 
CORRECTIONS IN TAPING 
 
Temperature Change 

e = α Lo (T –To) 
 
T = Temperature during measurement 
To = Temperature when tape is length of Lo 

α = coefficient of thermal expansion of tape, 11.6 x 10-6 /oC for 
steel 
 
Pull Correction 
 

e =  
( P -  Po) Lo

A E
 

 
P = pull during measurement  
Po = pull when the tape is of length Lo 

A = cross – sectional are of the tape 
E = modulus of elasticity of the tape = 200 GPa for steel 
 
 
 



 

 

 

 

Sag Correction (Negative Error) 
 

e =
w2 L3

24 T2 

 
W = weight of tape per linear m or ft 
L = unsupported length of tape 
T = pull during measurement 
 
Slope Correction (Negative Error)  
 

e = 
h2

2S
 

 
h= difference in elevation between the ends of the tape 
S = inclined distance 
 
Corrected or True Distance of a Line 
 

TD = MD + Error 
 
TD = true or corrected distance of the line 
MD = measured distance 
Error = total error 
 

Error = e x N 

N = 
MD
L1

 

 
e = error per tape length (+) if too long and  (-) if too short 



 

 

N = number of tape lengths 
LT = length of tape 
 
Reduction to Sea Level 
 
When horizontal measurement is done at high elevations the 
sea-level distance can be found by the following relationship: 
  
 
 
 
 
 
 
By proportion of figures: 
 

D
R

= 
Dh

R+h
 or D= 

Dh R
R+h

 

 
Correction , ΔD = Dn - D  

 
Dn = horizontal distance at an altitude of h (above sea level),  
D = Actual or Corrected dist. At the surface of the earth 
h = altitude of observation, m 
R = radius of earth, m 
 

Approximate formula 
 

Correction, ΔD = Dh �
h2

R2 
 - 

h
R

 � 

R R 

h 

D 

Dh 

h 

Level of measurement 

Earth Surface 



 

 

 

 

Reduction Factor, k = 1 - 
h
R

 

D = Dh x k 
 
 
EFFECT OF EARTH’S CURVATURE AND REFRACTION 
 

hcr = 0.0675 K2 
y = 1000 K tan θ 

 
where K is the distance of the parameter 
 
LEVELING 
 

HI = Elev. of A + BS 
Elev. of B = HI - FS 

Difference in elev. = FS - BS 
 
Where: HI = height of instrument 

BS = backsight 
FS = foresight 
 

SENSITIVITY OF BUBBLE TUBES 
 
The division of bubble tubes are usually spaced at 2-mm 
intervals, the student would often wants to know how much the 
rod readings will be affected if the bubble were off center 
 

Δh
D

= 
c
R

 

 



 

 

Where: R = radius of curvature of the bubble tube 
 c = displacement of bubble from center, usually in 

number of spaces 
 D = horizontal distance from instrument to rod 
h = error in vertical reading 
 

ERROR DUE TO NON-ADJUSTMENT OF TRANSIT 
TELESCOPE 
 
The error in horizontal angle when the axis of the transit 
telescope is not horizontal. 
 

Error, E= e tan θ 
 
Where: 
e = angle of inclination of the telescope axis, usually in minutes 
or seconds 
θ = observed vertical angle of the object 
E = error in horizontal angle in minutes or seconds 
 
When two observations are made, the total error may be 
expressed as:  
 

Error = e (tan θ1 - tan θ2  ) 
 
Where:  
θ1= first vertical angle 
θ2 = second vertical angle 
 
 



 

TRAVERSE 
 
The survey procedure known as traversing is fundamental to 
much survey measurement. The procedure consists of using a 
variety of instrument combinations to create polar vectors in 
space that is ‘lines’ with a magnitude (distance) and direction 
(bearing). These vectors are generally contiguous and create a 
polygon which conforms to various mathematical and geometrical 
rules (which can be used to check the fieldwork and 
computations). The equipment used generally consists of 
something to determine direction like a compass or theodolite, 
and something to determine distance like a tape or 
Electromagnetic Distance Meter (EDM). 
 
LATITUDE AND DEPARTURE OF A LINE 
 
North Latitude is (+) 
South Latitude is (-) 
 
East Departure is (+) 
West Departure is (-) 
 
 

Latitude = Distance x cos θ 
Departure = Distance x sin θ 

Distance = �(Latitude)2+ (Departure)2 
 
 
 
 

La
tit

ud
e 

Departure 

Distance 
Line AB 

A 

B 



 

 

CLOSED TRAVERSE 
 
For a closed traverse,  
 

�North Latitude = �South Latitude 

 

�East Departure = �West Departure 

 
 
ERROR OF CLOSURE 
 
For any closed traverse where the north and south latitudes are 
not equal and not equal and the east and west departure are not 
equal 
 
 
 
 
 
 
Error of Closure: 
 

E = �∆ L2+ ∆ D2 

Relative Error = 
Error of closure

Perimeter of traverse
 

 
Angular Closure 
The sum of the internal angles of a polygon (traverse) is given by 
the rule: 

Δ𝐿𝐿 
Δ𝐷𝐷 

E 



 � α = 180° (n - 2) 

 
Where n is the number of sides of traverse, and α is each internal 
angle. Any variation from this sum is known as the misclosure 
and must be accounted for, either through compensation (if it is 
an acceptable amount) or elimination by repetition of the 
observations. An angular closure is computed for traverses 
performed with either theodolites or magnetic compasses. A 
larger misclosure could be expected when using a magnetic 
compass, but in any case it must be calculated and removed. The 
reduction of magnetic compass bearings to angles also 
eliminates the effect of local attraction. 
 
BALANCING CLOSED TRAVERSE 
 
Intuitive Method – The intuitive method is commonly used but 
difficult to explain. It is based on the Surveyor’s understanding of 
the measurement process, and an acknowledgement that a line 
measured through dense bush in steep country is likely to have 
more accumulated random error than a line of similar length 
measured across flat grassy plains. Also, lines measure in the 
rain, after a pub lunch or just before quitting for the day may not 
be measured with the same degree of care as those at other 
times throughout the day. The Surveyor would perhaps add a few 
centimeters or so to one of suspect lines and recompute the 
misclosure. 
 
Compass rule – (Bowditch Method) The correction to be 
applied to the latitude (or departure) of any course is to the total 



 

 

absolute correction in latitude (or departure) as the length of the 
course is to the perimeter of the traverse. 
 

CL

|NLat- SLat|
= 

Length of course
Perimeter of Traverse

 

CL

|EDep- Wdep|
= 

Length of course
Perimeter of Traverse

 

 
 
Transit Rule – The correction to be applied to the latitude (or 
departure) of any course is to the total correction in latitude (or 
departure) as the latitude (or departure) of tat course is to the 
arithmetical sum of all latitudes (or departures) of the traverse. 
 

CL

|NLat- SLat|
= 

Latitude of the Course
NLat +|SLat|

 

CL

|EDep- Wdep|
= 

Latitude of the Course
EDep+|WDep|

 

 
How to apply these Corrections 
If the sum of the North Latitudes is greater than the sum of the 
South Latitudes, the correction is subtracted for North Latitudes 
and added for South Latitudes and vice versa. 
 
If the sum of the East Departures is greater than the sum of the 
West Departures, the correction is subtracted for East 
Departures and added for West Departures and vice versa. 
 
 
 



 

 

AREA OF CLOSED TRAVERSE 
 
After balancing the traverse by applying either the compass rule 
or the transit rule, the area may be computed using the Double 
Meridian Distance (DMD) Method or the Double Parallel 
Distance (DPD) Method. 
 
DMD Method 
 

1. The DMD of the first course is equal to the departure 
of that course. 

2. The DMD of any other course is equal to the DMD of 
the previous course plus the Departure of the course 
itself. 

3. The DMD of the last course must be numerically 
equal to the departure of the last course but opposite 
in sign. 

4. The double area of each course is equal to the 
product of the DMD and the Latitude of the course.  

 
Double Area = DMD x Latitude 

 
5. The area of the traverse is one-half the absolute value 

of the algebraic sum (consider the sign) of the double 
areas of all the courses.  

 

Area =
1
2

 ��Double Areas� 

 
 
 



 

DPD Method 
 

1. The DPD of the first course is equal to the departure 
of that course. 

2. The DPD of any other course is equal to the DPD of 
the previous course plus the Latitude of the previous 
course plus the Latitude of the course itself. 

3. The DPD of the last course must be numerically equal 
to the Latitude of the last course but opposite in sign. 

4. The double area of each course but opposite in sign. 
Double Area = DPD x Latitude 

 
5. The area of the traverse is one-half the absolute value 

of the algebraic sum (consider the sign) of the double 
areas of all the courses. 
 

Area =
1
2

 ��Double Areas� 

 
 
MISSING DATA 
 
The missing elements of a traverse polygon that can be solved 
for are as follows: 

1. Bearing and length of one side 
2. Bearing of one side and length of adjacent side 
3. Bearing of two adjacent sides 
4. Bearing of two non-adjacent sides 
5. Bearing of one side and length of one non-adjacent 

side 
6. Length of two sides (adjacent or non-adjacent) 



 

Only two missing elements can be determined as there are only 
two redundancies in a traverse network. 
 
1. Bearing and Length of One Side: 

 
 

 
 
 
 
 
This is the simplest of all cases because the unknown side is 
the closing line. 
 

(Lat)missing side= -� of latitudes of known sides 

(Dep)missing side = -� of Departure of known sides 

Distance = �(Lat)2+ (Dep)2  

tan(Bearing) = 
Dep
Lat

 

2. Bearing of One Side and Length of Adjacent Side: 
 

 

 

 

A 

B 

C 

D 

E 

Missing Side 

Closing Line 

A 

B 

C 

D 

E ϕ = ? 

θ = ? 

α 
f 



With reference to the figure, the missing data are length of side 
a, and side e. 

With lengths and bearing of side b, c and d known, the closing 
line f can be solved. Angle α can be solved since the bearing of e 
is known. 

f
sin ϕ

=
a

sin α
 ; ϕ= _______ 

θ + α + ϕ = 180° ; θ= _______ 

e
sin θ

=
a

sin α
 ; e= _______ 

With angle ϕ and bearing of side e known, the bearing of side a 
can be determined. 

3.  Bearing of Two Adjacent Sides: 

 

 

 

 

 

With reference to the figure, the missing data are bearings of 
side e and a. 

Closing Line 

A 

B 

C 

D 

E ϕ = ? 

θ = ? 

α = ? 
f a 

b c 

d 

e 



With lengths and bearings of side b, c and d known, the closing 
line f can be solved. 
With sides e, a and f known in triangle EAB, angles α and θ can 
be determined by cosine law and sine law. 
With bearing of the closing line f known, the bearings of e and a 
can be determined. 
 
4. Bearing of Two Non – Adjacent Sides: 

 
 

 

 

 

 

 

 

With reference to the figure, the bearings of side a and d are 
missing. 

Shift side e to BF and solve the closing line f from polygon DCBF. 
Shift side a to EF to form triangle DEF with three known sides, 
and solve angles θ and ϕ. With bearing of closing side f known, 
the bearings of side a and d can be solved. 

 

θ = ? 

ϕ = ? 

A 

B 

C 

D 
E 

F 

a 

b 

c 

d 

e 

e 

a 

f 

Unknown Bearing 

Unknown Bearing 

Closing Line 



θ  

ϕ = ? 

A 

B 

C 

D 
E 

F 

a 

b 

c 

d 

e 

e 

a 

f 

Unknown Bearing 

Unknown Length 

Closing Line 

α = ? 

5. Bearing of One Side and Length of One Non – Adjacent 
Side: 

 

 

 

 

 

 

 

With reference to the figure, the bearing of side a and length of 
side d are missing. 

Shift side e to BF and solve the closing line f from polygon DCBF. 
Shift side a to EF to form triangle DEF. 

With closing bearing of closing side f and side d known angle θ 
can be solve.   

f
sin α

=
a

sin θ
 ; α = _______ 

θ + α + ϕ = 180° ; ϕ= _______ 
d

sin ϕ
=

a
sin θ

 ; d = ______ 

With known ϕ and bearing of side f, the bearing of side a can be 
solved. 



6. Length of Two Sides (Adjacent or Non – Adjacent) 

Example: A closed traverse has the following data:  

Line Distance Bearing 
AB 179.00 N 47˚02’14” E 
BC 258.20 S 69˚35’59” E 
CD ? S 39˚35’48” W 
DE ? S 87˚29’48” W 
EA 145.41 N 24˚48’09” W 

Find the lengths of CD and DE. 

Solution: 

Line Distance Bearing Latitude Departure 
AB 179.00 N 47˚02’14” E 122 131 
BC 258.20 S 69˚35’59” E -90 242 
CD x S 39˚35’48” W -0.7706x -0.6373x 
DE y S 87˚29’48” W -0.04368y -0.999y 
EA 145.41 N 24˚48’09” W 132 -61 

   0 0 
ƩLat = 122 – 90 – 0.7706x – 0.04368y + 132 = 0 
 17.642x + y = 3754.58 (Eq. 1) 

ƩDep = 131 + 242 – 0.6373x – 0.999y – 61 = 0 
 x + 1.5676y = 489.565 
 x = 489.565 - 1.5676y (Eq. 2) 
 17.642(489.565 - 1.5676y) + y = 3754.58 
 8636.91 – 27.6556y + y = 3754.58 
 y = 183.16 m  
 x = 202.44 m 
Note: This is also applicable if the unknown sides are non – 
adjacent.  



 

 

AREA OF CROSS-SECTIONS AND VOLUME OF 
EARTHWORKS 
 
The area of any irregular plane figure (such as the one shown) 
can be found approximately by dividing it into a number of strips 
or panels by a series of equidistant parallel chords (offsets) h1, h2, 
… hn the common distance between the chords being d 
 
 
 
 
 
 
 
AREA BY TRAPEZOIDAL RULE 
 
Assuming each strip as a trapezoid, then area is: 
 

Area = 
d
2

[h1 + 2( h2+ h3+…)+ hn] 

 
 
AREA BY SIMPSON’S ONE-THIRD RULE 
 
This method is more accurate than the previous because it 
considers the curved side. Using this rule, there must be an odd 
number of offsets, thus n must be odd. 
 

Area = 
d
2

 �h1+2� hodd+4� heven+hn  � 

 

 h1 h2 h3 h4 h5 

d d d 



 

 

 

AREA BY COORDINATES 
 
The area of planar (convex or concave) with vertices  
 

Area = 
1
2

 ��X1 X2
Y1 Y2

�+ �X2 X3
Y2 Y3

�+…+ �Xn X1
Yn Y1

�� 

Area =
1
2

 �X1 X2
Y1 Y2

 X3 X4
Y3 Y4

…Xn X1
Yn Y1

� 

Area =
1
2

 [X1Y2 − X2Y1 + X2Y3 − X3Y2 + … XnY1 − X1Yn] 

 
The area of a polygon is defined to be positive if the points are 
arranged in a counterclockwise order and negative if they are in 
clockwise order 
 
VOLUME BY END AREA METHOD 
 

Vend area= 
A1 + A2

2
 L 

 
 
PRISMOIDAL FORMULA 
 

V= 
L
6

 (A1 + 4 Am + A2) 

  
Am = cross-sectional area at mid-section 
 
 
 
 



 

 

PRISMOIDAL CORRECTION FORMULA 
(Three-level section) 

 
 
 
 
 
 
 
 
 
 
 
 

VPC = 
L
12

 (C1 -  C2)(D1 - D2) 

 
Corrected volume 
 

Vc= Vendarea - VPC   
 

CUT AND FILL 
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L
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L = 
HCUT + HFILL 
Gground - Groad

 

 
VOLUME BY UNIT AREA METHOD 
 
Truncated Prism 
 
 
 
 
 
 
 

V = A 
∑h
n

 

 
A = base area 
h = corner height 
n = number of corners 

L

G
g 
L 

G
s L

 

FI
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 +
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h 1
 

h n
 

h 3
 

h 2
 

A 



 

 

ASSEMBLY OF RECTANGULAR PRISM 
 
 
 
 
 
 
 
 
 
 
 
 

V = A  
∑ h1 + 2∑h2 +  3∑ h3 + 4∑ h4  

4
 

 
h1 = height found on one area only 
h2 = height common to two areas 
h3 = height found on three areas 
h4 = height common to four areas 
 
VOLUME OF RESERVOIR OR PIT 
 
Volume by End-Area Method 
 

V = 
1
2

 �A1 + 2�A1 + An � 

 
∑A1   = sum of areas of interior sections 
A1 & An = area of the first and last sections 
 

h2 

h2 h2 h2 

h2 h2 

h3 

A A 

h1 

h1 h1 

h1 h1 

h2 

h2 
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A 
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h4 h4 
h4 

h4 

h4 



 

Volume by Prismoidal Formula 
 
Applicable only for odd number of sections 
 

V = 
d
3

 �A1 + 2�Aodd + 4�Aeven + An� 

 
Note: if there is an even number of sections, use the end area to 
get the volume of the last segment 
 

SIMPLE CURVE 

  

 

 

 

 

 

 

 

P 

PC R O 

I 

I/2
  

I/2
  

θ
  

R 

PT 

I 
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E 

m 

α 

I/2
  

x
  

b
  

T
  

L
  

R - x O 
α 

b 

P 



 

 
x = perpendicular offset from the tangent to the curve 
α= deflection angle from PC to any point P on the curve  
 

α = 
θ
2

 

tan α =  
x
b

 

I = angle on intersection of the tangents or central angle of 
simple curve 
D = degree of curve 
PI = point of intersection (of tangents) 
PC = point of curvature 
PT = point of tangency 
 
 
Radius of Curve 
Arc Basis 
    

20 = 
τRD
180°

 

 
Chord Basis 
 

10 = R sin
D
2

 

 
 
 

D 
R R 

20 m 

D 
R R 

20 m 

R 

10m 

D/2 



 

 

 

 

 

LENGTH OF CURVE 
 

Lc = 
πRI
180°

 

Lc = 
20I
D

 

 
TANGENT DISTANCE 
 

T = R tan
I
2

 

 
LENGTH OF LONG CHORD 
 

L = 2 R sin
I
2

 

 
EXTERNAL DISTANCE 
 

E =  R sin
I
2

 - R = R �sec
I
2

 - 1� 

 
MIDDLE ORDINATE 
 

m = R - R cos
I
2

  = R �1- cos
I
2

 � 

 
MINIMUM RADIUS OF CURVATURE 
 
The minimum radius of curve so that a car can round the curve 
at velocity v without skidding is:  

(using arc basis) 



 

 

 
 
 
 
 
 

Rmin = 
v2

127 (e + f)
 

 
v = design speed in kph 
e = superelevation 
f = coefficient of friction 
Φ= angle of friction 
 
 
IMPACT FACTOR 
 
 

If = tan(θ+ ϕ) = 
v2

gR
 

 
 

 

 

 

in meter  

θ
  

1 

e 



COMPOUND CURVE 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PCC = point of compound curve 
 
With known stationing of PC: 

Sta. PT = Sta. PC + Lc1 + Lc2 
 
With known stationing of PI: 

Sta. PT = Sta. PI - x - T1 + Lc1 + Lc2  
 

y 

PCC 

θ
  I1 I2 

 

I = I1+ I2 PI 

x 

PT 

PI 

Lc1 Lc2 

I2 

I1 

R1 

R2 

T1 

T2 

Common Tangent 

T1 + T2 

 

x 

 

y 

I1 I2 

 

θ
  



 

 

REVERSED CURVE 

  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
PRC = point of reversed curvature 
 
With known stationing of A: 
 

Sta. PT = Sta. A - T1 + Lc1 + Lc2  
 
With known stationing of PC: 
 

Sta. B = Sta. PC + Lc1 + Lc2 
 
 
 
 
 

I2 

I1 

R1 

R2 

R1 
R2 

PRC 

B 

A 
T1 

T2 

T1 

T2 

PC 

PT 

Lc1 

Lc2 



SPIRAL CURVE 

A transition curve or spiral curve should be place between 
tangents and each end of a simple curve and between the simple 
curves of a compound curve. A spiral increases in curvature 
gradually, thus avoiding an abrupt change in the rate of lateral 
displacement of cars. It also provides a means of gradually 
elevating the far end of the road in proper relation to the degree 
of curvature. 
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TS =  tangent to spiral 
SC = spiral to curve 
CS = curve to spiral 
ST = spiral to tangent 
LT  = long tangent 
ST = short tangent 
R = radius of simple curve 
 
 
 
 
 
 
 
 
 
 
 
 
   Transition (spiral) Curve 
 
 
Distance Along Tangent to Any Point on the Spiral 
 

Y = L - 
L5

40R2Ls
2   and Yc= Ls - 

Ls
3

40R2 

 
 
 



 

 

 

 

 

 

Offset Distance from Tangent to Any Point on the Spiral 
 

X = 
L3

6RLS
  and Xc = 

Ls
2

6R
 

 
Spiral Angle from Tangent to Any Point on the Spiral 
 

θ = 
L2

2RLs
 and θs = 

Ls

2R
 , radians 

 
Deflection Angle from TS to Any Point on the Spiral 
 

i = 
θ
3

 and is = 
θs

3
 

and 
i
is

= 
L2

Ls
2 

 
Tangent Distance 
 

Ts= 
Ls

2
+ (R + P) tan

I
2

  

 
Angle of Intersection of Simple Curve 
 

Ic = I - 2θs 
 
Length of Throw 
 

P =  
Xc

4
 = 

Ls
2

24R
 



 

 

 

 

 

External Distance 
 

E = (R + P) sec
I
2

 - R    
 
 
Degree of Spiral Curve at Any Point 
 

D
Dc

 = 
L
Lc

 

 
Dc = degree of simple curve 
 
Desirable Length of Spiral 
 

Ls= 
0.036v2

R
 ;v = velocity in Kph 

 
Super – Elevation Rate e(considering friction) 
 

e = tan θ 

tan  (θ + ϕ)= 
v2

gR
 ; (v in

m
s

 & R in m) 

tan  (θ + ϕ)= 
0.0079v2

gR
 ; (v in kph & R in m) 

 
Super – Elevation, e (ideal superelevation) 
 

e = 
0.0079v2

R
 ;( v in kph & R in meter) 



 

Role of Change of Centripetal Acceleration 
 

q = 
v3

RLs
 ;( m s3⁄ , v in

m
s

,R & Ls in m) 

 
 
PARABOLIC CURVES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Grade Diagram 
 

From the grade diagram shown: 
 

y 

x 

g1 g2 

v

a

d

h1

PC PT

h2

L/2L/2

L

Back Tangent Forward Tangent 

H 

H 

S1 S2 

A 

g 

s 

g1 

g1 

g2 

Summit 



 

 

S1

g1
 = 

L
g1- g2

 or S1 = 
g1L

g1- g2
 

S2

g2
 = 

L
g1- g2

 or S2 = 
g2L

g1- g2
 

v = A 
 

h1 = As1 = 
1
2

 g1 S1 

  

h2 = As2 = 
1
2

 g2 S2 

 
 
 
 
Other Formulas 
 

H = 
L
8

 �g1 - g2� 

a =  (L 2⁄ )g1       d = g1 x 
𝑦𝑦
𝑥𝑥2

=  
𝐻𝐻

(𝐿𝐿 2⁄ )2 

 
 
 

 

 

 



 

 

SYMMETRICAL PARABOLIC CURVES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

H = 
�g1 - g2� L1L2

2L
 =  

L1

2
 �g1 - g3� 

h1 = h2 = H 4⁄  
 
Slope of Common Tangent 
 

g3 = g1 - 
2H
L1

= 
g1L1 - g2L2

L
 

L 

Common Tangent 
h2

L1/2 L1/2 L2/2 L2/2 

S1 S2 

L1 L2 

x 
g3 

g2 

g1 A1 

h1

g2
g1

H
g3

PI

PT 

PC 
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Location of highest or lowest point of the curve 
 
When L1g1 > 2H, the highest or lowest point is on the right side of 
the curve 
 

S2 = 
g2L2

2

2H
 and S1 = L - S2  

 
When L1g1 < 2H, the highest or lowest point is on the left side of 
the curve,  
 

S1 = 
g1L1

2

2H
 and S2 = L - S1  

 
The location of the highest or lowest point may also be found 
using the grade diagram. 
 
SIGHT DISTANCE 

Sight distance is the clear visible distance ahead of the driver. 
This is to categorized as stopping sight distance and passing 
sight distance. 
 
STOPPING SIGHT DISTANCE (SSD) 
 
This is the length of roadway needed between a vehicle and an 
arbitrary object (at some point down the road) to permit a driver 
to stop a vehicle safely before reaching the obstruction. 
 



 

 

The minimum SSD is computed for a height of eye(driver eye 
height) of  3.5 feet and a height of object (obstruction in roadway) 
of 6 inches. 
 
Stopping sight distance consist of the following time intervals: 

1. The time for the driver to perceive the obstruction 
2. The time to react 
3. The time for the vehicle to stop after brakes are applied 

(Braking Distance, BD) 
 
The first two time intervals is called perception reaction time. Its 
ranges from 2 sec to 2.5 sec. It depends on the alertness, care, 
skill and vision of the driver, and weather. 
 
The distance traveled during the perception – reaction time, t: 
 

D =v t , v in meters 

D = 
vt

3.6
 , v in kph 

 
The third time interval is called the braking distance, BD. It is a 
function of road inclination and friction. When a car traveling at a 
velocity v on a road of grade G (positive for upgrade and negative 
for downgrade) suddenly applies a brake, the Braking Distance 
is: 
 

BD =  
v2

2g (f + G)  , v in m/s 

BD = 
v2

2g (f + G) (3.6)2  , v in kph 



 

 

Where f is coefficient of friction, G is the road grade (0 if 
horizontal) and BD is the distance in meters. 
 
 
The Stopping Sight Distance is therefore: 
 

SSD  = v t +  
v2

2g (f + G)  , (v in
m
s

 , t in sec) 

SSD = v t + 
v2

2g (f + G) (3.6)2  (v in kph , t in sec)   

 
 
PASSING SIGHT DISTANCE (PSD) 
 
Passing sight distance is the length of roadway ahead visible to 
the driver. 
 
Minimum Passing Sight Distance for Overtaking Vehicle 
 
This the shortest distance sufficient for a vehicle to turn out of its 
traffic lane, pass another vehicle, and then turn back to its lane 
safely without interfering with the overtaken vehicle and the 
incoming vehicle which was sighted when the overtaking 
maneuver started 
 

Minimum PSD = d1 + d2+ d3 + d4 
 
 
 
 



 

 

SIGHT DISTANCE ON HORIZONTAL CURVES 
 
 
 
 
 
 
 
 
 
 
When S < LC 

 

R = 
S2

8m
 

 

When S > LC 

 

R = 
L (2S - L)

8m
 

 
Where: LC = length of curve 
 R = radius of curve 
 S = sight distance 
 
 
 

LC 

S 

m 

Obstruction 



 

 

SIGHT DISTANCE ON VERTICAL SUMMIT CURVES 
 
 
 
 
 
 
 
 
 
When S < L 
 

L = 
AS2

100 ��2h1+ �2h2�
2 

 
When S > L 
 

L =  2S - 
200 ��h1+ �h2�

2

A
 

 
A = change in grade in percent = g1 – g2 

 

Standard values in road design: 
 For stopping sight distance (SSD) 
  h1 = 3.75 feet (1.14m) 
  h2 = 6 inches (0.15m) 
  
 For passing sight distance (PSD) 
  h1 = 3.75 feet (1.14m) 

S 

h2 

L 

h1 

g1 g2 



 

 

 

 

  h2 = 4.5 inches (1.37 m) 
 
SIGHT DISTANCE ON SAG PARABOLIC CURVES 
 
H = 2 ft (standard design value) β = 1˚ 
 
When S < L 
 

L= 
AS2

200 (S tan β+H)  , ft or m 

 
For H  = 2 ft & β = 1˚ 
 

L = 
AS2

400+ 3.5S
 , ft  

 
When S > L 
 

L = 2S - 
200 (H + S tan β)

A
 , ft or m 

 
For H = 2 ft & β = 1˚ 
 

L = 2S - 
400 + 3.5S

A
 , ft or m 

 
L = Length of Curve 
S = sight distance 
A = change in grade in percent = g2 – g1 

 



 

SIGHT DISTANCE ON VERTICAL SAG CURVE WITH 
OBSTRUCTING OVERPASS 
When S > L:  
 
 
 
 
 
 
 
 
 
 
 

L = 
2S �g2 - g1� - 8H

g2 - g1
 

H = C – z 

z = 
h1+ h2

 2
 

 
When S < L: 
  

L = 
S2�g2 - g1� 

8H
 

H = C – z 

z = 
h1+ h2

 2
 

 
Where C is the vertical clearance between the sag curve and the 
obstruction (underpass) 

g1 g2 

H 

Z 

C 

PC PT 

Line of sight 
Overpass (obstruction) 

Sight Distance, S 

h2 h1 

Length of curve, L 



PAVEMENTS 
 
Historically, pavements have been divided into two broad 
categories, rigid and flexible. These classical definitions, in some 
cases, are an over-simplification. However, the terms rigid and 
flexible provide a good description of how the pavements react to 
loads and the environment. 
 
The flexible pavement is an asphalt pavement. It generally 
consists of a relatively thin wearing surface of asphalt built over a 
base course and subbase course. Base and subbase courses are 
usually gravel or stone. These layers rest upon a compacted 
subgrade (compacted soil). In contrast, rigid pavements are 
made up of Portland cement concrete and may or may not have 
a base course between the pavement and subgrade. 
 
 
The essential difference between the two types of pavements, 
flexible and rigid, is the manner in which they distribute the load 
over the subgrade. Rigid pavement, because of concrete’s rigidity 
and stiffness, tends to distribute the load over a relatively wide 
area of subgrade. The concrete slab itself supplies a major 
portion of a rigid pavement’s structural capacity. Flexible 
pavement, inherently built with weaker and less stiff material, 
does not spread loads as well as concrete. Therefore flexible 
pavements usually require more layers and greater thickness or 
optimally transmitting load to the subgrade. 
 
One further practical distinction between concrete pavements 
provides and asphalt pavement is that concrete pavement 
provides opportunities to reinforce, texture, color and otherwise 



enhance a pavement, that is not possible with asphalt. These 
opportunities allow concrete to be made exceedingly strong, long 
lasting, safe, quiet and architecturally beautiful. Concrete 
pavements on average outlast asphalt pavements by 10-15 years 
before needing rehabilitation. 
 
RIGID PAVEMENTS 
 
A rigid pavement typically consist of a Portland cement-concrete 
slab resting on a subbase course. 
 
Basic Components of Rigid Pavements 
 
Joints 
 
There are three basic joint types used in concrete pavement: 
contraction, construction and isolation. Specific design 
requirements for each type depend upon the joint’s requirements 
for each type depend upon the joint’s orientation to the direction 
of the roadway (transverse or longitudinal). Another important 
factor is load transfer. Except for some isolation joint, all joints 
provide a means to mechanically connect slabs. The connection 
helps to spread a load applied on one slab onto slabs along its 
perimeter(s). This decreases the stress within the concrete and 
increases the longevity of the joints and slab(s). The efficiency of 
the mechanical connection is expressed as load transfer 
efficiency. 
 
 
 
 



Contraction Joints 
 
Contraction joints are necessary to control natural cracking from 
stresses cause by concrete shrinkage, thermal contraction, and 
moisture or thermal gradients, within the concrete. Typically 
transverse contraction joints are cut at a right angle to the 
pavement centerline and edges. However, some agencies skew 
transverse contraction joints to decrease dynamic loading across 
the joints by eliminating the simultaneous crossing of each wheel 
on a vehicle’s axle. Contraction joints are usually sawed into the 
concrete, but they might be formed or tooled on smaller projects. 
The details below show the different types of contraction joints 
and their dimensions.  
 
Construction Joints  
 
Construction joints join concrete that is paved at different times. 
Transverse construction joints are necessary at the end of a 
paving segment, or at a placement interruption for a driveway, 
cross road or bridge. Longitudinal construction joints join lanes 
that paved at different times, or join through-lanes to curb and 
gutter or auxiliary lanes. The details below show the different 
types of construction joints and their dimensions. 
 
Isolation Joints 
 
Isolation joints separate the pavement from objects or structures, 
and allow independent movement of the pavement, object or 
structure without any connection that could cause damage, 
isolation joints are used where a pavement abuts certain 
manholes, drainage fixtures sidewalks and buildings, and 



intersects other pavements or bridges. The details below show 
the different types of isolation joints and their dimensions. 
 
Load transfer 
 
Each type of joint provides a different ability to transfer load 
across slabs. This ability is termed load transfer efficiency (or 
effectiveness). It is determined as shown in the figure. Note how 
both sides of the joint deflect evenly at 100% load transfer 
efficiency.  
 
Load transfer is important to pavement longevity. Most 
performance problems with concrete pavement are a result of 
poorly performing joints. Distress, such as faulting, pumping and 
corner breaks occur in-part from joints with poor load transfer 
efficiency. All of these problems worsen when joints deflect 
greatly under loads. 
 
Dowel bars provide a mechanical connection between slabs 
without restricting horizontal joint movement. They also keep 
slabs in horizontal joint movement. When loaded by heavy 
vehicles, dowel bars lower joint deflection and stress in the 
concrete slab and reduce the potential problems by increasing 
load transfer efficiency. 
The use of dowel bars (smooth round bars) in transverse 
contraction joint primarily depends upon the roadway or street 
classification and can be determined by slab street classification 
and can be determined by slab thickness. Doweled contraction 
joints are not usually used in light residential, residential, or 
secondary urban pavements, but they are used in industrial 
roads, major streets, highway and airports that will carry heavy 



vehicles for long periods. Click here to find out when to use 
dowels. 
 
When dowels are not used, joint depend solely upon aggregate 
interlock for load transfer. Aggregate interlock is the mechanical 
locking which forms between the fractured surfaces along the 
crack below the joint saw cut. Reliance on aggregate interlock 
without dowels is acceptable on low-volume and secondary road 
systems where truck traffic is low and slabs are less than 8 inches 
thick. Ordinarily, transverse joints with dowel bars provide better 
load transfer than those relying strictly on aggregate interlock. 
 
Aggregate Interlock Deformed steel tie bars are used in 
longitudinal joints primarily to prevent lanes from separating. Also 
by holding slabs tightly together, they promote aggregate 
interlock and consequently load transfer. 
 
Subbases and Subgrades 
 
A reasonably uniform subgrade or subbase, with no abrupt 
changes in support, is ideal for any concrete pavement. Most 
native soils are not too uniform and thus require some 
improvement or additional layers to compensate. 
 
A subbase is a thin layer of material placed on top of the prepared 
subgrade. Subbase provide uniform support to the pavement and 
a stable platform for construction equipments. Subbase also help 
prevent movement of subgrade soils at transverse pavement joint 
in roads subject to a large volume of truck traffic. Subbases may 
be gravel, stone, cement-modified soil, asphalt, or econoconcrete 
(low-strength concrete) 



 

 

EMPIRICAL PAVEMENT DESIGN FORMULAS 
 
THICKNESS OF RIGID PAVEMENT 
 
OLDERS THEORY 
 
Without dowels or Tie Bars: 
 

Thickness at edge, t = �
3W
fcT

 

 
With Dowels or Tie Bars 
 

Thickness at edge, t = �
3W
2fcT

 

Thickness at center, t = �
3W
4fcT

 

 
Where: W = wheel load in lb or N 

fcT = allowable tensile strength of concrete in psi or MPa 
t = thickness of concrete slab in inches or mm 

 
 
 
 
 
 
 



 

AASHTO RIGID PAVEMENT DESIGN EQUATION 
 

log W 18= (ZR)(SO) + 9.36 log  (SN + 1)-0.20 + 
log � ∆PSI

4.2 - 1.5�

0.4+ 1094
(SN + 1)5.19

+2.32 log MR-8.07

 

 
Where: W18 = 18,000 lb (80 kN) equivalent single axle loads 

predicted to pt. 
ZR = Z-statistic associated with the selected level of 
design reliability 
So = overall standard deviation of normal distribution of 
errors associated with traffic prediction and pavement 
performance. 
SN = Structural Number (essentially a Thickness Index) 
∆PSI = overall serviceability loss = po – pt 

po = initial serviceability index following construction 
pt = terminal serviceability index; and 
MR = resilient modulus of the roadbed soil(s) 

 
THICKNESS OF FLEXIBLE PAVEMENT 
Cone Pressure Distribution (45˚)  
 
  
  
 
 
 
 
 

W 

Base 

Pavement 

Stress, f1 

Stress, f2 

Contact area of wheel and 
pavement with radius r 



 

 

 

t= �
W
π f

 

 
where : W= weight load in lb or N 

f = bearing strength of subgrade or base in psi or MPa 
r = radius of contact of wheel to pavement in inches 

Note: To solve t, use f2 and use f1 to solve for t1. 
 
McLeods Method 
 

𝑡𝑡 = 𝐾𝐾 log
𝑊𝑊
𝑓𝑓

 

 
Where: W= weight load 

f = subgrade pressure 
K = constant 

 
Hveem and Carmany (California Highways) 
 

K = 
F

0.125 
, where F = 

P
A

 

 
Where: t = thickness of pavement in inches 

K = 0.095 (coefficient depending on design wheel load 
and tire pressure with a factor of safety) 
TI = Transfer Index = 1.35 (EWL)0.11 
R = resistance value 
c = cohesiometer value 
EWL = equivalent wheel load 

 



 

 

 

Although the above equation encompasses parameters for the 
bound maters (c value) and the underlying unbound materials (R-
value) as well as the traffic volume (TI), it is based on a 5000 lb 
(22 kN) wheel load with a tire pressure of overtime and the 
formula shown above was an early form of the procedure. 
 
U.S. Corps of Engineers 
 

t = √W �
1.75
CBR

- 
1

π pt
� 

CBR = 
Unit Load at 0.10 inch penetration

1000 psi
 x 100 

 
Where: W = wheel load in kg 

CBR = California Bearing Ratio 
pt = tire pressure in kg/cm2 

 
Stiffness Factor of Pavement 
 

Stiffness Factor, S = �
k
E

3

 

 
Where: k = modulus of elasticity of subgrade (MPa or psi) 

E = modulus of elasticity of pavement (MPa or psi) 
 
Modulus of Subgrade Reaction 
 

k = 
F

0.125
, where F = P/A 



 

 

Where P = load in kg causing 0.125 cm settlement 
A  = area of standard plate (with 75 cm diameter) 

 
TRAFFIC ENGINEERING 
 
SPACE MEAN SPEED 
 
Space mean speed (harmonic mean speed) us is the average 
speed of vehicles occupying a given length of road at an instant 
of time 
 

Us = 
D

tave
= 

n

∑ 1
ul

= 
nD
∑ tl

 

 
Where: D = length of road 

n = number of passing vehicle 
ul = velocity of each vehicle 

 
TIME MEAN SPEED OR SPOT SPEED 
 
The arithmetic mean of the speeds of vehicles passing a point 
during a given interval of time.  
 

ut =  
1
n

 (u1+u2+…+ un) 

 
 
 
 
 



 

 

 

FLOW OR FLOW RATE 
 
Flow rate, q is the number of vehicles passing a point during a 
specified period of time; often referred to as volume when 
expressed in vehicles per hour (veh/hr) measured over an hour. 
 

q = k us 
 
 
DENSITY 
 
Density, k is the number of vehicles per unit length 
 
SPACING OF VEHICLES 
 

Spacing =
1000

k
 in meters/veh 

Spacing = 
uave

q
, (km/veh) 

 
Uave = average speed of passing vehicles in km/hr 
q = flow in vehicle/hr 
 
AVERAGE DAILY TRAFFIC 
 

ADT = 
No. of passing vehicles per year

365
 

 
 
 
 



 

 

 

PEAK HOUR FACTOR (PHF) 
 
Peak hour factor is the ration of the traffic flow of the highest 
volume of traffic in one hour, based on highest five-minute volume 
of traffic.  
 

PHF = 
Flow, q �in vehicles

hour �

Highest volume every 5 min x 12
 

 
TRAFFIC INDEX 
 
The traffic index for n year is given as 
 

TI = 1.35 (EWL)0.11 

EWL = 
n
2

 (1+r) (Total annual EWL) 

Total annual EWL = Sum of products of ADT & EWL 
 
EWL = equivalent wheel load 
ADT = Average Daily Traffic 
r = rate of increase of traffic, in percent 
 
CAPACITY OF A SINGLE LANE 
 

Capacity = 
1000 v

s
 ; �

vehicles
hr

� 

s = v t + L 
 
v = average speed of vehicle in kph 
s = average center-to-center spacing of vehicles in meters 



 

 

 

L = length of one car in meters 
t = reaction time in seconds 
 
ACCIDENT RATE 
 
 

Accident Rate = 
No. of Accidents

No. of entering vehicles
 

 
Accident rate is usually expressed in accidents per million 
entering vehicles 
 
Accident Rate per Million Entering Vehicles (MEV) for an 
intersection 
 

R = 
N x 1,000,000
ADT (t)(365)  

 
Accident Rate per Hundred Million Vehicle Miles of travel 
(HMVM) for a segment of a highway 
 

R = 
N x 1,000,000

ADT (t)(365) (L) 

 
Where : N = number of accidents during the analysis period 

ADT = average daily traffic 
t = time or period of analysis in years 
L = length of segment in miles 

 
 



 

 

 

FLUID MECHANICS AND HYDRAULICS 

Properties of Fluid 
 
Unit Weight or Specific Weight, γ 
 
The weight per unit volume of a fluid 
 

γ = 
Weight of Fluid

Volume
 

 
For water γ = 9810 N/m3 = 62.4 lb/ft3 
 
Mass Density or Density ρ 
 
The mass of fluid per unit of volume 
 

ρ = 
Mass of Fluid

Volume
 

 
For water, ρ = 1000 kg/m3 
 
Density of Gases 
 

ρ = 
p

RT
 

 
Where: p = absolute pressure of gas in kPa 
 R = gas constant in Joule/kg-˚K 
  For air, R = 287 J/kg-˚K  
 T = absolute temperature in degree Kelvin 



 

 

 

       ˚K = ˚C + 273 
        (˚Rankine = ˚Fahrenheit + 460) 
 
 
Specific Volume, Vs 

 

Vs= 
1
ρ

 

 
 
Specific Gravity, s 
 

s = 
γfluid
γwater

= 
ρfluid
ρwater

  

 
 
VISCOSITY 
 
The property of a fluid which determines the amount of its 
resistance to shearing forces. A perfect fluid would have no 
viscosity. 
 
Dynamic or Absolute Viscosity, µ (mu)  
 

μ = 
σ

dV dy⁄  (Pascal-second or poise) 

 
Note: 1 poise (P) = 1 dyne-sec/cm2 = 0.1 Pa-s 
          1 centiPoise (cP) = 0.001 Pa-s 
 
 



 

 

Kinematic Viscosity, ν (nu) 
 

ν = 
μ
ρ

 �m2 s⁄  or stroke� 

 
Note:  1 stoke (St) = 1 cm2/s = 0.0001 m2/s 
 1 sentiStoke (cSt) = 10-6 m2/s 
 
Surface Tension  σ (sigma) 
 
The surface tension of a fluid is the work that must be done to 
bring enough molecules from inside the liquid to the surface to 
form a new unit area of that surface in ft-lb/ft2 or N-m/m2. 
 
Pressure inside a droplet of liquid 
 

p = 
4σ
d

 

 
where: 
 σ = surface tension in N/m 
 d = diameter of the droplet in meter 
 p = gage pressure in Pascals 
 
CAPILLARITY 
 
The rise or fall or a fluid in a capillary tube which is caused by 
surface tension and depends on the relative magnitudes of the 
cohesion of the liquid and the adhesion of the liquid to the walls 
of the containing vessel. Liquid rise in tubes they wet (adhesion 
> cohesion) and fall in tubes they do not wet (cohesion > 



 

 

adhesion). Capillary is important when using tubes smaller than 
about 3/8 inch (9.5 mm) in diameter. 
 
 
 
 
 

 

 

 
             
            Capillary rise   Capillary depression 
 
 
 

h = 
4 σ cos θ

γ d
 

 
Use θ = 140˚ for mercury on clean glass 
 
For complete wetting, as with water on clean glass, the angle θ 
is 0 ˚. Hence the formula becomes 

 

h = 
4 σ
γd

 

 
Where: 
 h = capillary rise or depression 

h 

θ 

d d 

h 

θ 



 

 

 

 γ = unit weight 
 d = diameter of the tube 
 σ = surface tension 
 
Bulk Modulus of Elasticity, E 
 
The bulk modulus of elasticity of the fluid expresses the 
compressibility of the fluid. It is the ratio of the change in unit 
pressure to the corresponding volume change per unit of volume. 
 

E= 
dp'

-dv v⁄  
= 

∆p
∆v
v

 ( lb in2 or Pa)⁄  

Where: 
dp' = change in pressure 
dv = change in volume 
v = volume 

 
COMPRESSION OF GASSES 
 
For a perfect gas: 
 

pvn =  p1 v1
n = constant 

 
Where p is absolute pressure, v is the specific volume (v=1/ρ) and 
n may have any non-negative value from zero to infinity, 
depending upon the process to which the gas is subjected. If the 
process is at constant temperature (isothermal), n = 1. 
 

pv =  p1 v1 



 

 

 

if there is no heat transfer to and from the gas, the process is 
known as adiabatic. 
 

p1v1
k =  p2 v2

k 
 
A frictionless adiabatic process is called an isentropic process 
and n is denoted by k, where k = Cp/Cv, the rato of specific heat 
at constant pressure to that at constant volume. 
 
Boyle’s Law (perfect gas) 
 
If the temperature of a given mass of gas remains constant, the 
absolute pressure of the gas varies inversely with the volume. 
 

p = 
k
V

 or pV = k  

p1V1= p2V2 
 
 
Charle’s or Guy-Lussac’s Law (perfect gas) 
 
If a given mass of gas can expand or contract with the pressure 
remaining constant, the volume V of the gas varies directly as the 
absolute temperature T, i.e. V/T is constant/ 
 
Combined Charle’s and Boyle’s Law (perfect gas) 
 

p1V1

T1
= 

p2V2

T2
 

 



 

 

Pressure Disturbances 
 
Pressure disturbances imposed on a fluid move in waves. The 
velocity or celerity is expressed as: 
 

c= �
EB

ρ
 ( m s⁄  or ft s)⁄  

 
where: 

c = celerity or velocity of pressure wave in m/s or ft/s 
EB = bulk modulus of elasticity of the fluid in Pa or lb/ft2 

 
UNIT PRESSURE 
 
Variations in Pressure 
 
The difference in pressure between 
any two points in a homogeneous 
fluid at rest is equal to the product 
of the unit weight of the fluid and the 
vertical distance between the points 
 

p2- p2= γh  
 
The pressure at any point below 
the free surface of a liquid equals 
the product of the unit weight of 
the liquid and the depth of the 
point. 
 

h 

h 

2 

1 



 

 

 
p2- p2= γh  

 
 
Pressure below layers of different liquids 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pbottom = � γ h + p =γ1h 1+ γ2h 2+ γ3h 3+ p 

 
 
TOTAL HYDROSTATIC PRESSURE 
 
TOTAL PRESSURE ON PLANE SURFACE 
   
  Free Liquid Surface 
 
 
 
 

h1 

h2 

h3 Liquid 3 

Liquid 2 

Liquid 1 

Air Pressure = p 

Pbottom 

F 
h θ 

Y� 

e 
c.g
 c.g



 

 

F = pcg x A      or      F = γh�A 
 

e= 
Ig

A Y�
                                  Y�= 

h�

sin θ
   

 
where pcg = pressure at the centroid of the plane 

 Ig = centroidal moment of inertia of the plane 
 A = area of the plane surface 
 θ = angle that the plane makes with the horizontal 

 
 
TOTAL PRESSURE ON CURVED SURFACE 

 
 
 
 
 
 
 
 
 
 
 

FH=pcgA 
Fv = γ VABCD 

F = �FH
2+ Fv

2 

tan θ = Fv FH⁄  
 

D C 

FH 

F 

Fv 

θ 
c.g. 



Where: FH = total force acting on the vertical projection of the 
curved surface 

 Fv  = the weight of imaginary or real fluid directly above 
the curved surface 

Note: For cylindrical and spherical surfaces, the total force F 
always passes to the center of the circle defined by its 
surface 

 
DAMS 
 
Consider 1m length of dam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vertical 
projection 

of 
submerged 

face 

h 

1 m 

y 
W1 

W2 

F 

X2 

X1 

Ry 

Rx 

R 
�̅�𝑥 

z 

B 

Heel 

Assumed uplift pressure 
diagram 

Toe 



 

 

 

 

Weight of dam, W = γconc Volume 
Hydrostatic force, F = pcg A = γ h� A 

Ry= �Fv = W1 + W2  −  U  

Total uplift pressure, U = γw x voluplift diagram  
 
 
Righting Moment 
 
These are the moments about the toe causing rotation towards 
the upstream side. From the figure shown, 
 

RM = W1 x1 + W2 x2 
 
 
Overturning Moment 
 
These are the moments about the toe causing rotation towards 
the downstream side. From the figure shown, 
 

OM =  Fy + U z 
 
Factor of Safety against Sliding 
 

FSs = 
μ Ry

Rx
 

 
Where μ is the coefficient of friction between the foundation and 
base of dam 
 



 

 

 

 

 

Factor of Safety against Overturning 
 

FSo= 
RM
OM

 

 
Location of R 
 

Ry x� = RM −OM 
 
 
FOUNDATION PRESSURE (SOIL PRESSURE) 
 
Eccentricity, e 
 

e = 
B
2
−  x� 

 
 
For e ≤ B/6: 
 

q = −
Ry

B
 �1 ± 

6e
B
�   

 
Use ( + ) for the pressure at the toe 
Use ( − ) for the pressure at the heel 
 
For e ≥ B/6: 
 

q = 
2Ry

3 x�
 

 



 

 

BOUYANCY 
 
Archimedes’ Principle – Any body immersed in a fluid is acted 
upon by an unbalanced upward force called the buoyant force, 
which is equal to the weight of the fluid displaced. 
 
 
 
 
 
 
 
 
 
 
 
 

𝐵𝐵𝐵𝐵 =   𝛾𝛾𝐹𝐹 𝑉𝑉𝐷𝐷  
 
For homogeneous body floating on a homogenous liquid. The 
volume displace is:  
 

VD = 
γbody

γliquid
 Vbody =  

Sbody

Sliquid
 Vbody 

 
 
 
 
 
 

VD 

BF 

VD 

BF 



 

 

STATICALLY STABILITY OF FLOATING BODY 
 
 
 

 
 
 

 
 
 
 
 
 

MBo =  
vS

VD sin θ
 

RM or OM = W (x) = W (MG sin θ) 
 
Where v = volume of the wedge of immersion 

s = horizontal distance between the centroid of the 
wedges 
VD = volume displaced 
θ = angle of tilting 

 
If the body has the shaped of a rectangular parallelepiped 
 

MBo = 
B2

12D
 �1+ 

tan2θ
2

� 

W 
Volume of 
wedge, v 

Metacenter 

L 

M 

S 

BF 

D 

G 

B 

Bo 

x 

θ 



 

 

 

Where B = width, D = draft 
 
Metacentric Height 
 
Metacentric height is the distance from the metacenter to the 
center of gravity of the body measure along the axis of the body. 
 

MG = MBo ± GBo 
 
Value of MBo in the Upright Position 
(Initial Value)  
 

MBo = 
1

VD
 

 
Where I = moment of inertia of the body along the waterline 
section 
 
RELATIVE EQUILIBRIUM OF LIQUIDS 
 
Horizontal Acceleration 
 
 
 
 
 
 
 
 

tan θ = 
a
g
 

θ 

a 



 

 

 

 
 
 
 
 
 
 
 
 
 

tan θ = 
𝑎𝑎ℎ

g ± 𝑎𝑎𝑣𝑣
 

ah=  a cos α   ;  av = a sin α 
 
Use ( + ) if the motion is upward and ( - ) if downwards. 
 
Vertical Acceleration 
 
 
 
 
 
 
 
 

𝑝𝑝 =  𝛾𝛾 ℎ �1 ±  
𝑎𝑎
𝑔𝑔
� 

 
Use (+) for upward motion and ( - ) for downward motion. 
 
 

a 
ay 

ax 

h 

a 



 

 

 

ROTATION 
 

y =  
ω2 x2

2g
 

tan θ  =  
dy
dx

 =  
ω2x
g

 

 
Volume of Paraboloid 
 

Volume = 
1
2

 π  r2 h 

 
 
FLUID FLOW AND PIPES 
 
Flow Rate 
 

Volume Flow Rate, Q = Av 
Mass Flow Rate, M = ρ Q 

Weight Flow Rate, W = γ Q 
 
Continuity Equation 
 
 
 
 
 
 
 
 

Q 

Q 
1 

2 
3 



 

 

 

Incompressible fluid 
 

Q1 =  Q2 = Q3 = … 
A1v1 =  A2v2 =  A3v3 = … 

 
 
Compressible fluid 
 

ρ1 Q1 =  ρ2 Q2 =  ρ3 Q3 = … 
 
Where A = cross-sectional area of flow 
           v = mean velocity of flow 
 
Reynold’s Number (for pipes) 
Reynolds Number R is the ratio of inertia forces to viscous 
forces 
 

R= 
vDρ

μ
= 

vD
v

 

 
Where v = mean velocity of flow, m/s 

D = pipe diameter, m 
μ = (mu) dynamic viscosity (Pa-s) 
v = (nu) kinematic viscosity (m2/s) = μ/ρ 
ρ = density, kg/m3 

 
For non-circular pipes, use D = 4R, where R is the hydraulic 
radius, R = A/P 
 
For R < 2100, the flow is laminar 



 

Laminar flow in circular pipes can be maintained up to values or 
R as high as 50,000. However, n such cases this type of flow in 
inherently unstable and the least disturbance will transform it 
instantly into turbulent flow. On the other hand, it is practically 
impossible for turbulent flow in a straight pipe to persist at values 
of R much below 2100 because any turbulence that is set up will 
be damped out by viscous friction. 
 
ENERGY EQUATION 
Total Energy of Flow 
 

E = kinetic Energy +  Potential Energy 

E = 
v2

2g
+ 

ρ
γ

+Z 

 
Where  

 v2

2g
 = velocity head (K.E.) 

 ρ
γ
 = pressure head (P.E.) 

 Z = elevation head (P.E.) 
 
Bernoulli’s Energy Theorem 
Between any two points (1 and 2) along the stream: 
 
 
 
 
 
 
 

Datum 

ZA 

ZB 

A 

B 



 

 

 

 

E1 + HA - HE - HL = E2 
 
Where: E1 = Total Energy (head) at section 1 

HA = head added (by the pump) 
HE = head extracted (by turbine or any other device) 
HL = total head lost 

 
HEAD LOST IN THE PIPE FLOW 
 
MAJOR HEAD LOST (FRICTIONAL LOSSES) 
 
DARCY-WEISBACH FORMULA 
 

hf = 
fL
D

 
v2

2g
 in ft or meter 

 
For Laminar Flow 
 

f = 
64
R

 =  
64 μ
v Dρ

 

hf = 
32 μ L v 
ρ g D2 

 

 
For non-circular pipe, use D = 4R 

 
For circular pipes, the following formulas may be used 
 

v2

2g
 =  

8 Q2

π2g D4                             hf= 
fL
D

 
8 Q2

π2g D4 



 

 

 

 

For S.I. units,  hf = 
0.0826 f L Q2 

D5  

 

hf =  
128 μ L Q2

π ρ g D4  (for laminar flow) 

 
MANNING’S FORMULA 
 

S.I. units, v = 
1
n

 R
2
 3 S 

1
2  , (m s⁄ ) 

English unit, v = 
1.486

n
 R 

2
3 S 

1
2 ,(ft s⁄ ) 

 
Where R = hydraulic radius = A/P 
            S = slope of EGL = hf / L 
 

hf = 
6.35 n2L v2

D4 3⁄  (m) 

 
Use D = 4R for non-circular pipes 
 
For circular pipes, the following formula may be used 
 

hf = 
10.29 n2 L Q2

D 
16
3

 (m) 

 
 
 
 



 

 

 

 

HAZEN-WILLIAMS FORMULA 
  
English Units 

v = 1.318 C1R 0.63S 0.54 , v in
ft
s

 , R in ft 

 
For circular pipes, this formula becomes 
 

Q = 0.4322 C1 D 2.63 S 0.54, Q in
ft3

s
 , D in ft 

 
S.I. Units 
 

v = 0.849 C1R 0.63S 0.54 , v in
m
s

 , R in m 

 
For circular pipes, this formula becomes 
 

Q = 0.2785 C1 D2.63 S 0.54, Q in
ft3

s
 , D in ft 

and hf = 
10.67 L Q1.85

C1
1.85 D4.87  

 
Where: 
 R = hydraulic radius 
 S = slope of EGL = hf / L 
 C1 = Hazen William’s coefficient 
 
 
 



 

 

 

MINOR HEAD LOST 
Minor losses are due to changes in direction and velocity of flow, 
and is expressed in terms of the velocity head at the smaller 
section of the pipe in case of constrictions 
 

hm = K
v2

2g
 

 
Where K = coefficient of minor loss 
 
HEAD LOST THROUGH NOZZLES 
 

hn= �
1

Cv
2�

vn
2

2g
 

 
For horizontal pipes with uniform diameter, the head lost between 
any two points is equal to the difference in pressure head 
between the points. 
 

HL = 
P2- P1

γ
 

 
For a pipe or system of pipes connecting two reservoirs, the total 
head lost is equal to the difference in water surface elevation of 
the reservoirs. 
 

  
 
 
 

H 



 

 

 

 

HL = H 
 
 
PIPIE IN SERIES 
 
 
 
 

Q1 = Q2 = Q3  
 HL = hL1 +  hL2 + hL3 

  
 
PIPE IN PARALLEL 
 
 
 
 
 

Q = Q1 + Q2 + Q3 
HL = hL1 = hL2 = hL3 

 
 
EQUIVALENT PIPE 
 
For a pipe or system of pipes (O), the equivalent single pipe (E) 
is must satisfy the following conditions: 
 

QE = QO 
and HLE = HLO 

 

A B C D 1 2 3 

Q1 Q2 Q3 

Q3 

Q2 

Q1 1 

2 

3 



 

 

ORIFICE AND TUBES 
 
The velocity and discharge through an orifice is given by 
 

v =  Cv �2gH 
Q = C Ao �2gH 

C = Cc x Cv 
 
Where Cv = coefficient of velocity 

C = coefficient of discharge 
Cc = coefficient of contraction 
H = total head in meter or feet of the fluid flowing 

 
Value of H 
 

H = head upstream - head downstream 

H = hu+ 
va

2

2g
+ 

pu
γ

 - ho - 
po
γ

  

 
Where 
 va = velocity approach 
 pu = pressure at the upstream side 
 po = pressure at the downstream side 



 

 

 

 

UNSTEADY FLOW (VARIABLE HEAD) 
 
If water flows into a tank at the rate of Qi and 
at the same time leaves Qo, the time for the 
level to change from h1 to h2 is 
 

t = �
As dh

Qi - Qo 

h2

h1

 

 
If Qi = 0 (no inflow) 
 

t = �
As dh
Qo 

h2

h1

 

 
If the outflow is through an orifice under a variable head H 
 

Qo = C Ao�2gH 
 
If the cross-sectional area As is constant and the flow is through 
an orifice, the formula becomes 
 

t = 
2 As

C Ao�2g
 ��H1 - �H2 � 

 
Where H1 = initial head (at level 1) 

H2 = final head (at level 2) 
 

h2 
h1 

Qi 

Qo 



 

 

If water flows through the pipe connecting the two tanks shown, 
the time for the head to change from H1 to H2 is 
 

t = 
As1As2 

As1+ As2  
 

2 As

C Ao�2g
 ��H1 - �H2 � 

 
 
WEIR 
 
Weirs are overflow structure usually built across an open channel 
to control or measure the flow 
 
RECTANGULAR WEIR (SUPPRESSED)  
 
 
 
 
 
 
 
 
 
General Formula 
 

Q = 
2
3

 C �2g L �(H+ hv)2 3⁄ - hv
2 3⁄ � 

or Q = Cw L �(H+ hv)2 3⁄ - hv
2 3⁄ � 

 

where hv = va
2

2g
 velocity head of approach 

L 

H 



 

 

 

C = coefficient of discharge 
Cw = weir factor 

 
Neglecting va:  
 

Q = 
2
3

 C �2g L H 
2
3 

or Q = Cw L H 
2
3  

 
 
FRANCIS FORMULA (CW = 1.84 FOR S.I. UNITS)  
 

Q =1.84 L�(H+ hv)2 3⁄ - hv
2 3⁄ � 

 
Neglecting va: 
 

Q =1.84 LH 
2
3  

 
Using English Units Cw = 3.33 
 
Contracted Weirs 
 
For contracted weirs, the value of L is reduced by 10% of the head 
H in each end contraction 
 For one end contraction, use L = L – 0.10H 
 For two one end contraction, use L = L – 0.20H 
 
 
 



 

 

CIPOLLETI WEIR 
 

Q = 1.859 L H 
2
3 

θ = 75.9637°= 75° 57'50" 
β = 14.0363° = 14° 2'10" 

 
TRIANGULAR V-NOTCH WEIR 
 
 
 
 
 
 
 
 
 
 

Q = 
8
15

 C �2g tan
θ
2

 H 
5
2 

 
 
SUTTRO WEIR (PROPORTIONAL FLOW WEIR) 
 
 
 
 
 
 
 
 

L 

H  θ 

L 

H 
X 

Y 



 

 

 

Q = C π K �2g H  
K = x�y 

 
UNSTEADY FLOW WEIR (VARIABLE HEAD) 
 

t = �
As dh
Qo 

H2

H1

 

 
If the flow is through a suppressed rectangular weir 
 

t = 
2 As

Cw L
 �

1

�H2
-

1

�H1
 � 

 
where Cw = weir factor, H1 = initial head, H2 = final head 
 
 
OPEN CHANNEL 
 
Open channels are conduits which fluid flows with a free surface 
in an open channel flow, the hydraulic grade line is coincident with 
the stream surface and the flow may be uniform or non-uniform. 
 
Chezy Formula 
 
The mean velocity of flow in an open channel may be computed 
by the Chezy Formula 
 



 

 

 

 

 

v = C �RS 
 
where C = Chezy coefficient 

R = hydraulic radius 
S = slope of the EGL 
 
 

R = 
Cross-sectional area of flow

Wetted Perimeter
 

 
Value of C 

1. Manning (S.I.) 
 

C = 
1
n

 R
1
6 

 
2. Kutter (S.I.)  

 

C = 
1
n  + 23 + 0.00155

S
1+ n

√R
 �23 +  0.00155

S  �
 

  
 Where n is the roughness coefficient 
 
MANNING’S FORMULA  
SI Units 

v = 
1
n

 R 
2
3 S 

1
2 , ( m s⁄ ) 

Q = A 
1
n

 R 
2
3 S 

1
2 , ( m s⁄ ) 



 

 

 

 

English Units 
 

v = 
1.486

n
 R 

2
3 S 

1
2 , ( ft s⁄ ) 

Q = A 
1.486

n
 R 

2
3 S 

1
2 , ( ft s⁄ ) 

 
UNIFORM FLOW 
 
The simplest of all open channel problem is the uniform flow 
condition. In uniform flow, the slope of the energy grade line 
(EGL) is equal to the slope of the channel bed, So 

 
S = So 

 
 
Head Lost under Uniform Flow 
 

HL = So x L 
 
L = length of channel 
 
Normal Depth 
 
The normal depth dn is the depth at which uniform flow will occur 
in an open channel. Normal depth may be determined from the 
following equation for discharge:  

Chezy : Q = AC �RS 

Mannings: Q =  A 
1
n

 R 
2
3 S 

1
2 

 



 

SPECIFIC ENERGY, H 
 
The specific energy (H) is defined as the energy per unit weight 
relative to the bottom of the channel. It is given by:  
 

H = 
v2

2g
+d 

 
 
MOST EFFICIENT SECTIONS 
 
Also known as most economical sections, these are sections 
which for a given slope, area, and roughness, the rate of 
discharge is maximum. In order to attain maximum efficiency, the 
perimeter of the canal must be minimized. 
 
PROPORTIONS FOR MOST EFFICIENT SECTIONS 
 
Rectangular Section 
b = 2d 
R = d/2 
 
 
Trapezoidal Section 
Top width = sum of sides 
x = y1 + y2 
R = d/2 
 
 

b 

d 

b 

d y2 y1 

x 



 

Note: The most efficient of all trapezoidal section is the half 
regular hexagon 
 
 
 
 
 
 
 
 
Triangular Section 
90˚ V-notched  
 
 
 
The most efficient of all section is the Semi-Circle 
 
For Circular Section 
 Discharge, Q, is maximum when depth = 0.938 D 
 Velocity, v, is maximum when depth = 0.82 D 
 
FROUDE NUMBER 
 
The ratio of the inertia force to gravity force and is given by the 
expression:  
 

F = 
V

�gL
 

 
 

x 

2x 

x x 

60˚ 60˚ 

90˚ 1 

1 
1 

1 



 

For rectangular channel L = depth of flow d. 
 

F = 
V

�gd
 

 
ALTERNATE STAGE OF FLOW 
 
For a given total specific energy H, for an open channel flow, 
there exist two stages or depths of flow that will give the same 
discharge. These are the upper stage and the lower stage. 
 
Upper Stage 
 Flow is tranquil 
 Depth is called subcritical depth 
 Froude Number, F < 1 
 
Lower Stage 
 Flow is rapid or shooting 
 Depth is called supercritical depth 
 Froude Number, F > 1 
 
Critical Depth, dc 

 
Critical depth is the depth at which for a given total specific energy 
H, the discharge is maximum or it is the depth at which for a given 
discharge Q, the total specific energy is minimum. 
 
Critical depth is characterized by: 

1. Critical Velocity 
2. Critical Slope 



 

 

 

 

3. Froude Number, F = 1 
 
Critical depth is obtained by differentiating the following equation 
with respect to d and setting dQ/dd = 0 
 

Q = A�2g (H-d) 
 
Where A is the cross-sectional area of flow (which is a function of 
d and H is the specific energy which is constant. 
 
Critical Depth for Rectangular Section 
 
The critical depth for a rectangular canal can be obtained by the 
formula,  
 

dc = �
q2

g
3

= 
2
3

 H 

 
Where q is the unit discharge (m3/s per meter width) 
 

q = v d = 
Q
b

 

 
The slope required to give uniform flow at critical depth is known 
as the critical slope Sc. The equation for critical slope for wide 
rectangular channel is: 
 

Sc =  
g n2

dc
1
3

 



 

Critical Depth for Any Section 
 
 
The critical depth for any section may be computed from the 
formula 
 
 
 

Q2

g
= 

A3

B
 

 
Where A is the cross-sectional area of flow and B is the flow width 
at the top 
 
Note: A and B are always in terms of d, except that for rectangular 
canal B is constant 
 
 
NON-UNIFORM OR VARIED FLOW (S ≠ So) 
 
Uniform flow rarely occurs in natural streams because of changes 
in depth width, and slope along the channel. The Manning’s 
equation for uniform flow can be applied to non-uniform with an 
accuracy dependent on the length of reach L taken. Thus a long 
stream can be divided into several reaches of varying length such 
that the change in depth is roughly the same within each reach. 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

With reference to the figure above, the length of reach L is 

L = 
�v2

2

2g + d2� �
v1

2

2g + d1�

So-S
= 

H2 - H1 
So-S

 

The value of S can be computed using Manning Formula 

vm = 
1
n

 Rm 
2
3 S 

1
2 

 

S = �
n vm 

Rm 
2
3
�

2

 

 
 

v2/2g 

v2/2g 

SL 

EGL, Slope = S 

Channel Bed, Slope = So 

d1 

d2 SLo 

L 



 

 

Where  
vm = mean velocity between the two section 1 and 2 

vm= 
v1 + v2

2
 

Rm = mean hydraulic radius = R1 + R2

2
 

 
HYDRAULIC JUMP 
  
A hydraulic jump occurs when the upstream flow is supercritical 
(F>1). To have a jump there must be a flow impediment 
downstream. The downstream impediment could be a weir, a 
bridge abutment, a dam or simply a channel friction. Water depth 
increases during a hydraulic jump and energy is dissipated as 
turbulence. Often engineers will purposely install impediments in 
channels in order to force humps to occur. Mixing of coagulant 
chemicals in water treatment plants is often aided by hydraulic 
jumps. Concrete blocks may be installed in a channel 
downstream of a spillway in order to force a jump to occur thereby 
reducing the velocity and energy of the water. Flow will go from 
supercritical (F>1) to subcritical (F<1) over a jump 
 
General Equation 
 

A2 h2��� −  A1 h1 ����= 
Q2

g
�

1
A1

−
1
A2

 � 

 
For Rectangular Canal 
 

q2

g
= 

d1 d2 (d1 + d2)
2

 



 

 

 

 

Length, L = 220 d1 tanh
F1  −  1

22
, in meter 

 
Where q= v d = Q/b 
            F1 = Froude number at section 1 
 
Head Lost in the Jump 
 

HL = �
v1

2

2g
+ d1� −  �

v2
2

2g
+ d2� 

 
For rectangular canal, the head lost may be computed by: 
 

HL = 
(d2 - d1 )
4 d1 d2

 

 
 
HYDRODYNAMICS 
 
Hydrodynamics deals with the study of the motion of a fluid and 
of the interactions of the fluid with its boundaries. The force 
developed by this moving fluid is called the dynamic force. 
 
Force against Fixed Flat Plate Held Normal to the Jet 
If a jet of water strikes a fixed flat plate held normal 
(perpendicular) to its path, the dynamic force developed is given 
by the formula 
 

Dynamic force, F = 
Qγ

g
v = ρ Q v 



 

Force against Fixed Curved Vane 
 
 
 
 
 
 
 
 
 
 
 

Fx = 
Qγ

g
 (v1x- v2x ) ; Fy = 

Qγ

g
 �v1y- v2y �  

F =�Fx
2+Fy

2 

 
Where: v1 = velocity of the jet before hitting the vane 

v2 = velocity of the jet as it leaves the vane 
 
Force Against a Moving Vane 
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Fx = 
Q'γ
g

 (v1x- v2x ) ; Fy = 
Q'γ
g

 �v1y- v2y �  

 
 

Q'= A u          u =  v1y- v2y 
 
u = relative velocity of the jet as it moves along the vane 
Q’ = amount of fluid deflected by the vane 
 
If the vane is frictionless, such that the jet leaves the vane with 
relative velocity (u) in the direction of θ:  

Fx= ρA (v-v')2 (1- cos θ) 

Fy= -ρA (v-v')2 (1- sin θ) 

Where v’ = velocity of the vane 
u = relative velocity of the jet 
Q’ = quantity of water deflected by the vane 
v1 = absolute velocity of the jet before it strikes the vane 
v2 = absolute velocity of the jet as it leaves the vane 

 
WATER HAMMER 
 
Water hammer is the term used to express the resulting shock 
(hammer rise) in a pipeline cause by the sudden decrease or 
stoppage of motion (rate of flow or velocity) of the fluid 
 
 
 
 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
Consider the pipe line shown leading from a reservoir A to the 
valve at B. If the value is suddenly closed, the lamina of the liquid 
next to the valve will be compressed by the rest of the column of 
liquid flowing against it. At the same time the walls of the pipe 
surrounding this lamina will be stretched by the excess pressure 
produce. The cessation of flow and resulting pressure increase 
move along the pipe as a wave with the velocity c which is given 
by the following equations: 
 
For rigid pipes: 
 

c= �
EB

ρ
 

 
 
 

A 
x 

L 

v c 

rapid 

Instantaneous 

Transient HGL

Normal HGLXo 

ph/ γ 

B 
GATE 



 

 

 

 

For non-rigid pipes 
 

c= �
EB

ρ �EBd
Et �

 

 
The time for the pressure wane to travel from A to B and back 
again is: 
 

T = 
2L
c

 

 
Instantaneous Closure (tc = 0) 
 
The resulting shock due to instantaneous closure is given by: 
 

ph= ρ cV 
 
For instantaneous closure, the pressure increase reaches up to 
the pipe entrance at A where it drops instantly to the value it would 
have for zero flow. 
 
Rapid Closure (tc < 2L/c) 
 
It is physically impossible for a valve to be closed instantaneously 
(tc = 0). For a rapid closure (tc < 2L/c) the maximum pressure near 
the valve would still be 
 

ph= ρ cV 
 



 

No matter how rapid the valve closure may be, so long as it is not 
the idealized instantaneous case, there will be some distance xo 
from the intake within which the pressure rise cannot extend all 
the way to the reservoir intake: 
 
Slow Closure (tc > 2L/c) 
 
For slow closure, the excess pressure produced decreases 
uniformly from the value at the valve to zero at the intake. The 
maximum water-hammer pressure ph developed is given 
approximately by: 
 

ph = 
2L ρ v

tc
 

 
Where: 

c = celerity of pressure wave in m/s 
EB = bulk modulus of elasticity of the fluid in Pa 
 (for water at 30 ˚C, EB = 2.25 x 106 Pa) 
E = modulus of elasticity of the pipe wall in Pa 
t  = pipe thickness in mm 
d = internal diameter of pipe in mm 
tc = time of closure in seconds 
L = length of pipe in m 
v = velocity of flow in m/s 
ph = pressure change due to water hammer in Pa 
ρ = density of the fluid in kg/m3 



GEOTECHNICAL ENGINEERING 

PROPERTIES OF SOIL 
 
Density and Unit Weight of Water 
 
Density of water, ρw = 1000  kg/m3

 
  

            ρw = 1 kg/liter = 1 gram/cc 
Unit weight of water, γw 

= 9.81 kN/m3 
 
Basic Formulas 
 
 

Unit weight of substance, γs = G γw 
Weight of water, Ww = γw Vw 

Weight of substance, Ws = γs Vs =G γw Vs 
Specific gravity of substance, Gsubs = γsubs γw⁄  

 

Physical Properties of Soil 
 
 
                      
         
                   
 
 
                
       
 
              Figure Face Diagram of Soil 
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The following relationships can be made from the phase 
diagram shown: 
 

Total weight of soil, W =  Ww + Ws 
Volume of voids, Vv = Vs + Vw 

Total volume, V = Vs + Vv 
 

Void Ratio, e 
 
Void ratio is the ratio between the volumes of voids to the 
volume of solids of a soil mass. It is usually expressed in 
percent. 
 

e = 
Vv

Vs
 

 
 
Note: 0 <e < ∞ 
 
Porosity, n 
 
Porosity is the ratio between the volumes of voids to the total 
volume of a mass. It is usually expressed in percent. 
 

n = 
Vv

V
 

 
Note: 0 < n < 1 



Relationship between e and n 
 

n = e
1 + e

   and   e = n
1 - n

 

 
Water Content or Moisture Content, MC or w 
 
The ratio of the weight of water to the weight of solid particles. 
 

MC or w = 
Ww

Ws
 ×100% 

Note: 0 < MC < ∞ 
 
Degree of saturation, S 
 
The ratio of the volume of water to the volume of voids 
 

S = 
Vw

Vv
 ×100 

Degree of saturation varies from S = 0 for completely dry soil 
and S = 100% for totally saturated soil. 
 
Relationship between G, MC, S and e 
 

G × MC = S × e 

 
 
 



Unit Weight (or bulk unit weight) of Soil Mass, γm 
 

γm =  
W
V

 
 

γm = 
G + Se
1 + e

  γw = 
G + GMC

1 + e
 γw 

 
 
Dry Unit Weight, γd 
 
For dry soils, S = 0 and MC = 0 
 
 

γd =  
Ws

V
  = 

G
1 + e

 γw 

Ws = 
γd

1 + MC
 

γd = 
γm

1 + MC
 

 
 
 
Saturated Unit Weight, γsat 
For saturated soils, S =1, Vv = Vw 
 
 

γsat = 
G +e
1 + e

γw 



Submerged or Buoyant Unit Weight, γb or γ' 
 
 

γb or γ' = γsat - γw 

γb or γ' = 
G - 1
1 +e

 γw 

 

Critical Hydraulic Gradient 
 
Critical hydraulic gradient is the hydraulic gradient that brings a 
soil mass (essentially, coarse-grained soils) to static liquefaction 
(quick condition). 
 

icr = 
γb
γw

= 
G -1
1 +e

 

 
OTHER FORMULAS 
 
These formulas may not be memorized. These can be derived 
from the previous formulas. 
 

Volume of voids, Vv = e
1 + e

 V 

Volume of solid, Vs = V
1 + e

 



Volume of water, Vw = Se
1 + e

 V 

Weight of water, Ww = Se
1 + e

 V γw 

Weight of solid, Ws = 1
1 + e

 V Gm γw 

Weight of soil, W = G + Se
1 + e

 V γw 

Dry unit weight, γd = γm
1 + MC

 

 
 

Specific Gravity of Some Minerals 
Mineral Specific Gravity 

Gypsum Volcanic Ash 2.32 
Orthoclase 2.56 
Kaolinite 2.61 
Quartz 2.67 
Calcite 2.72 
Dolomite 2.87 
Magnetite 5.17 

 
 
RELATIVE DENSITY OF GRANULAR SOILS 
 
The relative density, Dr expresses the state of compactness of a 
natural granular soil. 
 



Dr = 
emax- e 

emax - emin
×100 

or Dr = 
1 γmin

� - 1 γd
�

1 γmin
�  - 1 γmax

�
 

 
Where: 
       emax = void ratio of the soil in the loosest state. 
       emin = void ratio of the soil in densest state. 
       e = void ratio of the soil deposit (in-situ sate) 
       γd max  = dry unit weight in densest state.  
       γd min = dry unit weight in loosest state. 
       γd =  dry unit weight in-situ state. 

 
Designation of Granular Soils 

 
Designation Dr(%) 
Very Loose 0 - 15 

Loose 15 - 53 
Medium Dense 35 - 70 

Dense 70 - 85 
Very Dense 85 - 100 

 
CONSISTENCY 
 
Consistency is the term used to describe the degree of firmness 
(e.g., soft, medium, firm or hard) of a soil. 
 



The consistency of a cohesive soil is greatly affected by the 
water content of the soil. A gradual increase of the water content 
of the soil may transform a dry soil from solid state to a 
semisolid state, to a plastic state and after further moisture 
increase, into a liquid state. The water content at the 
corresponding junction points of these states are known as the 
shrinkage limit, the plastic limit and the liquid limit respectively. 
 
 
 
           
 
 
           
 
 
           
 
 

 
Soil Indices 

 
Index Definition Correlation 

Plasticity PI =LL-PL Strength, compressibility, 
compactibility, … 

Liquidity 
LI = 

MC-PL
PI

 
Compressibility and stress rate 

Shrinkage SI =PL -SL Shrinkage potential 
Activity of clay 

Ac = 
PI
μ

 
Swell potential and so forth 

where μ =percent of soil finer than 0.002 mm (clay size) 
 

Liquid state 

Plastic State 
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Liquid limit, LL 

Plastic limit, PL 

Shrinkage limit, SL 



 
Activity Classification 
Ac < 0.7 Inactive clay 

0.7 < Ac <1.2 Normal clay 
Ac =1.2 Active clay 

 
 

Description of Soil based on Liquidity Index 
 

LI < 0 Semisolid state – high strength, brittle 
(sudden) fracture is expected 

0 <LI < 1 Plastic state – intermediate strength, soil 
deforms like a plastic material 

LI >1 Liquid state – low strength, soil deforms like 
a viscous fluid 

 
Description of Soil based on plasticity index 

PI Description 
0 Nonplastic 

1 - 5 Slightly plastic 
5 - 10 Low plasticity 

10 - 20 Medium plasticity 
20 - 40 High plasticity 

> 40 Very high plasticty 
 
 

 
 
 
 
 



Fall Cone Method to Determine Liquid and Plastic limits  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fall cone apparatus 
 

Fall cone test (cone penetration test) offers more accurate 
method of determining both the liquid limit and plastic limit. In 
this test a cone with apex angle of 30° and total mass of 80 
grams is suspended above, but just in contact with, the soil 
sample. The cone is permitted to fall freely for a period of 5 
seconds. The water content corresponding to a cone 
penetration of 20 mm defines the liquid limit. 
The liquid limit is difficult to achieve in just a single test. In this 
regard, four or more test at different moisture content is 
required. The results are plotted as water content (ordinate, 
arithmetic scale) versus penetration (abscissa, logarithmic 
scale) and the best-fit straight line (liquid state line) linking the 
data points is drawn (see figure below) the liquid limit is read 

30° 
 40mm 



from the plot as the water content on the liquid state line 
corresponding to penetration of 20 mm. 
 
The plastic limit is found by repeating the test with a cone of 
similar geometry, but with a mass of (M2) 240 grams. The liquid 
state line for this cone will be bellow the liquid state line for the 
80-gram cone (M1) and parallel to it. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PP 
 

 
 
 
The plastic limit is given as: 
 

PL =LL −  
2∆MC

log M2
M1
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Figure – Typical fall cone result 
 



Cup Method to Determine Liquid Limit 
 
The device used in this method consists of a brass cup and a 
hard rubber. The brass cu is dropped onto the base by a cam 
operated by a crank. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Liquid limit device and grooving tool 
 

 
The soil paste is placed in the cup, a groove is then cut at the 
center of the soil pat with the standard grooving tool. By the use 
of the crank-operated cam, the cup is lifted and dropped from a 
height of 10 mm. The moisture content required to close a 
distance of 12.7 mm along the bottom of the groove after 25 
blows is defined as the liquid limit. 
 
Since it is difficult to adjust the moisture content to meet the 
required closure after 25 blows, at least three tests for the same 

Crank 
Brass 

 

Soil 
 

Hard 
 



soil are conducted at varying moisture contents, with the 
number of blows required to achieve closure varying between 
15 and 35. The results are plotted on a graph paper, with the 
moisture content along the vertical axis (algebraic scale) and the 
number of blows, N, along the horizontal axis (logarithmic 
scale). The graph is approximated as a straight line (called the 
flow curve). The moisture content corresponding to N = 25 is the 
liquid limit of the soil. The slope of the flow line is defined as the 
flow index and may be written as: 
 

Flow index, FI = MC1 - MC2

log(N2
N1

� )
 

Where MC1 and MC2 are the moisture contents, in percent 
corresponding to the number of blows N1 and N2, respectively 
 

N 15 20 22 30 36 

MC 48 45.5 44.7 43.5 42.3 

 

 

 

 

 

           Figure flow curve 
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          Figure Flow Curve 

One-Point method to determine Liquid Limit 
 
This method may be used when only one test is run for the soil. 
This is established by the U.S. corps of Engineers in 1949 and 
was also adopted by ASTM under designation D-4318. 
 

LL = MCN �
N
25

�
tanβ

 

Where:  
N = number of blows in the liquid limit device for a 0.5-in groove 
closure. 
MCN =corresponding moisture content 
tan β =0.121 (but note that tan β is not equal to 0.121 for all soils) 
This method yields good results for the number of blows 
between 20 and 30 
 
Shrinkage Limit  
 
Soil shrinks as moisture is gradually lost from it. With continuing 
lost of moisture, a stage of equilibrium is reached at which more 
loss of moisture will result in no further volume change. The 
moisture content, in percent, at which the volume of the soil 
mass ceases to change, is defined as the shrinkage limit. 
 
The shrinkage limit is determined as follows. A mass of wet soil, 
m1, is placed in a porcelain dish 44.5 mm in diameter and 12.5 
mm high and then oven-dried. The volume of the oven-dried soil 
is determined by using mercury to occupy the vacant spaces 
caused by shrinkage. The mass of mercury is determined and 



the volume decrease caused by shrinkage can be calculated 
from the known density of mercury. The shrinkage limit is 
calculated from 
 

SL = 
m1 - m2

m2
 - 

V1 - V2

m2
 ρw 

Where: 
m1 = mass of wet (saturated)soil  
m2 = mass of oven-dried soil 
V1 = volume of wet soil 
V2 = volume of oven-dried soil  
ρw = density of water 
 
Shrinkage Ratio 
 

SR = 
1
ρw

 
m2

V2
 

 
Specific Gravity of Solids 
 

G = 
1

1
SR  - SL

100

 

 
Liquidity Index and Consistency Index 
 
Liquidity index (LI) defines the relative consistency of a 
cohesive soil in the natural state 
 



Liquidity index, LI = MC - PL
LL - PL

 

 
Where MC = in situ or natural moisture content if MC is greater 
than LL, LI > 1. If MC < PL, LI < 0 
 
 

Consistency Index, CI = LL - MC
LL - PL

 

 
If MC is equal to LL, CI is zero. If MC = PI, CI = 1 
 
Atterberge’s limits are also used to assess the potential swell of 
a given soil 

LL PI Potential swell classification 
< 50 < 25 Low 

50 – 60 25 – 35 Medium 
> 60 > 35 High 

 
CLASSIFICATION OF SOIL 
 
TEXTURAL CLASSIFICATION 
 
In this classification system, the soils are named after their 
principal components, such as sandy clay, silty clay, silty loam, 
and so on. There are number of classification system developed 
by different organizations. Shown below is the one developed by 
the U.S. Department of Agriculture (USDA). This method is 
based on the following limits of particle size: 
 



Sand size : 2.0 to 0.05 mm in diameter 
Silt size : 0.05 to 0.002 mm in diameter 
Clay size : smaller than 0.002 mm in diameter 
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UNIFIED SOIL 
  
CLASSIFICATION SYSTEM 
 
This system classifies soils into two broad categories. 

1. Coarse-grained soil that are gravelly and sandy in 
nature with less than 50% passing through the No. 
200 Sieve, the group symbols start with prefixes of 
either G or S. G for gravel or gravelly soil, and S for 
sand or sandy soil. 

2. Fine-grained soil with 50% or more is passing through 
the No. 200 sieve. The group symbol start with 
prefixes of M, which stands for inorganic silt, C for 
inorganic clay, and O for inorganic clay. The symbol 
Pt is used for peat, muck, and other highly organic 
soils. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) 
 
Major 

Divisions 
  

Typical Names 
  

Classification Criteria 
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Cu = (D60/D10) > 4 
Cc = (D30)2/(D10xD60) 

Between 1 and 3 

GP 

Poorly-graded 
gravels and 
gravel-sand 

mixtures, little or 
no fines 

Not meeting both criteria for GW 

G
ra

ve
l w

ith
 fi

ne
s GM 

Silty gravels, 
gravel-sand-silt 

mixtures 

Atterberg limits 
plot below “A” 

line or plasticity 
index less than 4 

Atterberg 
limits 

plotting in 
hatched 
area are 

borderline 
classification
s requiring 
use of dual 

symbols 

GC 
Clayey gravels, 
gravel-sand-clay 

mixtures 

Atterberg limits 
plot above “A” 

line or plasticity 
index greater 

than 7 
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C
le

an
 S

an
d SW 

Well graded 
sands and 

gravely sands, 
little or no fines 

Cu = (D60/D10) > 6 
Cc = (D30)2/(D10xD60)  

Between 1 and 3 

SP 

Poorly graded 
sands and 

gravely sands 
little or no fines 

Not meeting both criteria for SW 

S
an

d 
w

ith
 fi

ne
s SM Silty sands, sand-

silt mixtures 

Atterberg limits 
plot below “A” 

line or plasticity 
index less than 4 

Atterberg 
limits 

plotting in 
hatched 
area are 

borderline 
classification
s requiring 
use of dual 

symbols 

SC 
Clayey sands, 

sand-clay 
mixtures 

Atterberg limits 
plot above “A” 

line or plasticity 
index greater 

than 7 
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ML 

Inorganic silts 
very fine sands, 
rock flour, silty or 
clayey fine sands 

SEE GRAPH BELOW 

 
CL 

Inorganic clays of 
low to medium 

plasticity, gravely 
clays, sandy 

clays, silty clays, 
lean clays 

 
OL 

Organic silts and 
organic silty clays 
of low plasticitry 

S
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it 
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r t
ha

n 
50

%
 

 
MH 

Inorganic silts 
micaceous or 
diatomaceous 
fine sands or 

silts, elastic silts 

CH 
Inorganic clays of 
high plasticity, fat 

clays 

OH 
Organic clays of 
medium to high 

plasticity 
Highly 

Organic 
Soils 

PT 
Peat, muck, and 

other highly 
organic soils 

Visual-Manual identification, See ASTM 
Designation D2488 

 
Other symbols used 
W – well graded 
P – poorly graded 
L – low plasticity (LL < 50) 
H – high plasticity (LL > 50) 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CL  - Inorganic; LL < 50; PI > 7; Atterberg limits plot on or 
   above A – line 
ML - Inorganic; LL < 50; PI < 4 or Atterberg limits plot  
   below A – line 

0 
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CL - ML 

A line 

Equation of A line 
PI = 0.73(LL – 20) 
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OL - Organic; (LL – oven-dried)/(LL – not dried) < 0.75;  
   LL < 50 
CH - Inorganic; LL ≥ 50; Atterberg limits plot on or  
   Above A – line 
MH - Inorganic; LL ≥ 50; Atterberg limits plot below 
   A – line 
OH - Organic; (LL – oven-dried)/(LL – not dried) < 0.75; 
   LL is greater than or equal to 50 
CL – ML - Inorganic; Atterberg limits plot in the hatched zone 
 
Particle-Size Distribution Curve (Sieve Analysis) 
 
Sieve analysis consists of shaking the soil sample through a set 
of sieves that have the smaller openings. These sieves are 
generally 200 mm in diameter. 
 
To conduct a sieve analysis, the soil is first oven-dried and then 
all lumps must be broken into smaller particles. The soil is then 
shaken through a stack of sieves with openings of decreasing 
size from top to bottom. A pan is placed below the stack. 
 
A particle-size distribution curve can be used to determine the 
following four parameters for a given soil: 
 
Effective Size, D10 

 
This parameter is the diameter in the curve corresponding to 
10% finer. The effective size of a granular soil is a good 
measure to estimate the hydraulic conductivity and drainage 
through soil. 
 
 
 



Uniformity Coefficient, Cu 

 

Cu = 
D60

D10
 

Where D60 = diameter corresponding to 60% 
 
Coefficient of Gradation or Coefficient of Curvature, Cc 
 

Cc = 
(D10)2

D60 × D10
 

Where D30 = diameter corresponding to 30% finer 
 
Sorting Coefficient, So 
 

So = �
D75

D25
 

Where  
D75 = diameter corresponding to 75% finer 
D25 = diameter corresponding to 25% finer 
 
AASHTO CLASSIFICATION SYSTEM 
 
According to this system, soil is classified into seven major 
groups: A-1 through A-7. Soils classified under groups A-1, A-2 
and A-3 are granular materials of which 35% or less of the 
particles pass through the No. 200 sieve. Soils of which more 
than 35% pass through the No. 200 sieve are classified under 



groups A-4, A-5, A-6 and A-7. These soils are mostly silt and 
clay-type materials. 
 
To classify the soil using the tables below, one must apply the 
test data from left to right. By process of elimination, the first 
group from the left into which the test data fit is the correct 
classification. 
 
To evaluate the quality of a soil as a highway subgrade material, 
one must also incorporate a number called the group index with 
the groups and subgroups of the soil. This index is written in 
parentheses after group of subgroup designation, example, A-7-
5(35). 
  

GI = (F200 - 35)[0.2 + 0.005 (LL - 40)] + 0.01(F200- 15)(PI -10) 

Where: 
F200 = percentage passing No. 200 sieve 
LL = liquid limit, PI = plasticity index 
 
The first in the GI formula is the partial group index determined 
from liquid limit. The second term is the partial group index 
determined from plasticity index. 
 
 

• If GI yields a negative value, it is taken as 0 
• GI is rounded-off to the nearest whole number. 
• There is no upper limit for GI 
• The GI of soils belonging to groups A-1-a, A-1-b, A-2-

4, A-2-5, and A-3 is always zero. 
• When calculating the GI for soils that belong to groups 

A-2-6 and A-2-7, use the partial GI for PI, or 



GIP = 0.01�F200 - 15��PI - 10� 
 
 
 
 
 

Classification of Highway Subgrade Materials for Granular 
Materials (AASHTO) 

 

 
 

 
 
 
 
 
 

General 
classification 

Granular materials 
(35% or less of total sample passing No. 200) 

Group 
classification 

A-1  A-2 
A-1-a A-1-b A-3 A-2-4 A-2-5 A-2-6 A-2-7 

Sieve analysis 
(percentage 

passing) 
       

No. 10 50max.       
No. 40 30max. 50max. 51min.     
No. 200 15max 25max. 10max. 35max. 35max. 35max. 35max. 

Characteristic 
of fraction 

passing No.40 
       

Liquid limit    40max. 41min. 40max. 41min. 
Plasticity index 6max. NP 10max. 10max. 11min. 11min. 
Usual types of 

significant 
constituent 
materials 

Stone fragment, 
gravel, and sand 

Fine 
sand Silty or clayey gravel and sand 

General 
subgrade 

rating 
Excellent to good 



Classification of Highway Subgrade Materials for Silt-Clay 
Materials (AASHTO) 

General classification Silt-Clay materials 
(more than 35% of total sample passing No. 200) 

Group classification A-4 A-5 A-6 
A-7 

A-7-5a 

A-7-6b 
Sieve analysis 

(percentage passing)     

No. 10     
No. 40     

No. 200 36min. 36min. 36min. 36min. 
Characteristic of 

fraction passing No. 40     

Liquid limit 40max. 41min. 40max. 41min. 
Plasticity index 10max. 10max. 11min. 11min. 
Usual types of 

significant constituent 
materials 

Silty soils Clayey soils 

General subgrade 
rating Fair to poor 

a For A-7-5, PI ≤LL-30 
b For  A-7-6, PI >LL-30 
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FLOW OF WATER THROUGH SOILS 

DARCY’S LAW 

Darcy’s law governs the flow of water through soils. Darcy 
(1856) proposed that the average flow velocity through soils is 
proportional to the gradient of the total head. The velocity of the 
flow is: 

v = k i 
 

Seepage velocity, vs = v n⁄  
 
 
Where 

i = 
H
L

 =hydraulic gradient 
k = coefficient of permeability or hydraulic conductivity, m/s or 
m/day 
n = porosity 
 
The flow of water is: 
 

Q =k i A 

 
 
 
 
 



DETERMINATION OF THE COEFFICIENT OF 
PERMEABILITY 
 
Constant-Head Test 
 
The constant-head test is used to determine the coefficient of 
permeability of coarse-grained soils. 
 

k = 
V L

t A h 
 

Where:  
       V = volume of water collected in time t 
       h = constant head 
       A = cross-sectional area of the soil 
       L = length of soil sample 
       T = duration of water collection 
 
Falling Head Test  
 
The falling head test is used for fine-grained soils because of 
the flow of water through these soils is too slow to get 
reasonable measurement from the constant head test 
 
  

k = 
aL

A(t2- t1)  ln �
h1

h2
� 

Where: 
       a = cross-sectional area of the standpipe 
       h1 = head at time t1 
       h2 = head at time t2 



Effect of Water temperature on k 
 
The hydraulic conductivity of soil is a function of unit weight of 
water, and thus, it is affected by water temperature. The 
relationship is given by: 
 

kT1

kT2

 = 
μT2

μT1

 
γwT1

γwT2

 

Where     
kT1, kT2 =hydraulic conductivities at temperatures T1 and T2, respectively 
μT1

, μT2
 =viscosity of water at temperatures T1 and T2, respectively 

γwT1
, 

γwT2
 = unit weight of water at temperatures T1 and T2, respectively  

 
Flow Through Permeable Layers 
 
hydraulic gradient is: 
 

Hydraulic gradient, i = 
h
L

cos α

 

 
 

hydraulic gradient, i = sin α 

 
 
 
 



EMPIRICAL RELATIONS FOR HYDRAULIC CONDUCTIVITY 
 
Hazen Formula (for fairly uniform sand): 
 

k(cm / sec)=c(D10)2 

Where: 
      c = a constant that varies from 1 to 1.5 
       D10 = effective size, mm 
 
Casagrande (for fine to medium clean sand): 
 

k = 1.4 e2 k0.85 

Where k = hydraulic conductivity at a void ratio e 
           k0.85 = k at void ratio of 0.85 
 
Kozeny-Carman Equation 
 

k = C1 
e3

1 + e
 

Where k is the hydraulic conductivity at a void ratio of e and C, 
is a constant. 
 
Samarasinhe, Huang, and Drnevich 
 

k = C3 
en

1 + e
 

 
 



Where C3 and n are constants to be determined experimentally. 
 
EQUIVALENT HYDRAULIC CONDUCTIVITY IN STRATIFIED 
SOIL 
 
The equivalent permeability in the x-direction is (parallel 
flow): 
 

(kx)eq H = � kxz 

(kx)eq H = kx1z1+ kx2z2 +…kxnzn 

 
The equivalent permeability in the z-direction is (normal 
flow): 
 

H
(kz)eq

 = �
z
kz

  

 
H

(kz)eq
 =  

z1

kz1
 + 

𝑧𝑧2

kz2
 + ⋯  +  

𝑧𝑧𝑛𝑛

kzn
 

 
 
 
 
 
 
 
 
 
 



FLOW THROUGH LAYERS OF AQUIFERS 
 
 

keq(H) = k1H1 + k2H2 
Flow per unit width, q = keq i a 

i = 
D1 - D2

L
; a = 

D1 + D2 
2

(1) 
 

L
keq

 = 
L1

k1
 + 

L2

k2
 

Flow per unit width, q = keq i a 

i = 
D1 - D2

L
; a = 

D1 + D2 
2

(1) 
 

 
 
 
HYDRAULIC OF WELLS 
 
Underground water constitutes an important source of water 
supply. The stratum of soil in which this water is present is 
known as an aquifer. On the basis of their hydraulic 
characteristics, well are divided into two categories: gravity or 
water table wells, and artesian or pressure wells. If the pressure 
at the surface of the surrounding underground water is 
atmospheric, the well is of the gravity type; if this pressure is 
above atmospheric because an impervious soil stratum overlies 
the aquifer, the well is artesian. 
 
Assume that the water surrounding a well has a horizontal 
surface under static conditions. The lateral flow of water toward 
the well requires the existence of a hydraulic gradient, this 



gradient being caused by a difference in pressure. To create this 
difference in pressure, the surface of the surrounding water 
assumes the shape of an inverted “cone” during pumping of the 
well, as shown in profile in the figure. This cone is known as the 
cone of depression, the cross section of the cone at the water 
surface is called the circle of influence, and the distance through 
which the water surface is lowered at the well is termed the 
drawdown of 1 m is called specific capacity of the well. 
 
 
GRAVITY WELL 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

H1 

H2 

Static water table 

Drawdown 

Cone of 
depression 

Bottom of well 

R1 

R2 

Figure: Gravity well 



Q = 
πk�h2

2 - h1
2�

ln(R2 R1⁄ )  

 
 
 
Artesian Well 
 
Artesian wells are wells drilled through impermeable rocks into 
strata where water is under enough pressure to force it to the 
surface without pumping 
 

Q = 
2πkt( h2 - h1 )

ln(R2 R1⁄ )  

 
 
Where: 
       h1, h2, R1, R2 are in meters 
       k = coefficient of permeability 
       Q = discharge in m3 / hr 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TWO-DIMENSIONAL FLOW OF WATER THROUGH SOILS 
 
Flow Nets 
 
Seepage losses through the ground or through earth dams and 
levees and the related flow pattern and rate of energy loss, or 

Figure: Artesian 
 

h1 

h2 

Bottom of well 

R1 

R2 

 

t Confined 
 



dissipation of hydrostatic head, are frequently estimated by 
means of a graphical technique known as flow net. 
 
Flow net is a graphical representation of a flow field that 
satisfies Laplace’s equation and comprises a family of flow lines 
and equipotential lines. 
 
 

 
 
Flow nets  
 
A flow net must meet the following criteria 

1. The boundary conditions must be satisfied 
2. Flow lines must intersect equipotential lines at right 

angles, 

Equipotential line 

❶ 
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3. The area between flow lines and equipotential lines 
must be curvilinear squares. A curvilinear square has 
the property that an inscribed circle can drawn to 
touch each side of the square and continuous 
bisection results, in the limit, in a point. 

4. The quantity of flow through each flow channel is 
constant. 

5. The head loss between each consecutive 
equipotential line is constant. 

6. A flow line cannot intersect another flow line. 
7. An equipotential line cannot intersect another 

equipotential line 
Flow line is the path followed by a particle of water as it moves 
through a saturated soil mass. 
 
Equipotential line is a line connecting points of equal potential 
energy 
 
The flow of water through isotropic soil is: 
 

q  =kH
Nf

Nd
 

 
Where: 
       K = coefficient of permeability 
       H = head 
       Nf = number of flow channels 
            = number of flow lines minus 1 
       Nd = number of equipotential (pressure) drops 
            = number of equipotential line minus one 
       Nf/Nd is called the shape factor 
 



If the soil is anisotropic 
 

q  =H
Nf

Nd
 �kxkz 

 
 
STRESSES IN SOIL 
 
Intergranular Stress, pE (Effective stress) 
 
Intergranular or efective stress is the stress resulting from 
particle-to-particle contact of soil. 
 

pE = pT - pw 

 
 Pore Water Pressure, pw (Neutral stress) 
 
Pore water pressure or neutral stress is the stress induced by 
water-pressures. 
 

pw= γw hw 

Note: For soils above water table, pw = 0. 
 
Total Stress, pT 
 
The sum of the effective and neutral stresses.  
 

pE = pT + pw 



STRESS IN SOIL WITHOUT SEEPAGE 
 
Consider the soil layer shown 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At Point A: 
 Total stress, pT= γm h4 +q 
 Neutral stress, pw = 0 
 Effective stress, pE = pT −  pw 
At point B: 
 Total stress, pT = γsat1h5 + γmh1 +q 
 Neutral stress, pw = γw h5 
 Effective stress, pE = pT − pw 
  or p E= γb1 h5 + γm h1 + q 
At point C: 
 Total stress, pT= γsat3 h3 + γsat1 h2 + γm h1 + q 
 Neutral stress, pw= γwh6 
 Effective stress, pE= pT  − pw 
  pE = γb2 h3 + γb1h2 + γmh1 + q 

Water table 
A 

B 

C 

h4 

h2 

h5 

H6 

h3 

h2 

h1 

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠2, 𝛾𝛾𝑏𝑏2 = 𝛾𝛾2
′ 

𝛾𝛾𝑚𝑚 

𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠1, 𝛾𝛾𝑏𝑏1 = 𝛾𝛾1
′ 

Surcharge, q (kPa) 



STRESS IN SATURATED SOIL WITH SEEPAGE 
 
 
Upward seepage 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hydraulic gradient, i = h H2⁄  
 h1 = i × z1 = i (h H2⁄ ) 
 
At Point A: 
 pT = γwH1 
 pE = γwH1 
 pE = pT - pw= 0 
 
At Point B: 
 pT = γsat z1 + γw H1 
 pw= γw(z1+ H1+ h1) 
 pE= pT- pw= γbz1- γwh1 
 
At Point C: 

h 
h1 

H1 

H2 

overflow 

A 

C 

B 

soil 

inflow 



 pT= γsatH2 + γwH1 
 pw= γw(H2+H1 + h) 
 pE= pT- pw= γ bH2 - γwh 
The seepage force per unit volume of soil is: 
 
 
 
Downward Seepage 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hydraulic gradient, i= h H2⁄  
 h1 = i × z1 = i (h H2⁄ ) 
 
At Point A: 
 pT = γwH1 
 pE = γwH1 
 pE = pT - pw= 0 
 
At Point B: 

F =i γw 

soil 

inflow 

outflow 

overflow 

H1 

H2 

Z1 

h1 

A 
h 

B 

C 



 pT = γsat z1 + γw H1 
 pw= γw(z1+ H1- h1) 
 pE= pT- pw= γbz1+ γwh1 
 
At Point C: 
 pT= γsatH2 + γwH1 
 pw= γw(H2+H1 - h) 
 pE= pT- pw= γ bH2 + γwh 
 
 
EFFECT OF CAPILLARY RISE TO SOIL STRESS 

Capillary rise in soil is demonstrated on the following figure. A 
sandy soil is placed in contact with water. After a certain period, 
water rises and the variation of the degree of saturation with the 
height of the soil column caused by capillary rise is 
approximately given in the figure. 

 

SOIL h2 

h1 

100% Degree of 
Saturation (%) 

Variation of degree of saturation with height 



The degree of saturation is about 100% up to a height h1. 
Beyond the height h1, water can occupy only the smaller voids, 
hence the degree of saturation is less than 100% 
 
The approximate height of capillary rise is given by Hazen as: 
 

h2 = 
C

eD10
 

 
Where D10 = effective grain size, e = void ratio, and C = a 
constant that varies from 10 to 50 mm2 
 
The pore water pressure, pw, at a point in the layer of soil fully 
saturated by capillary rise is: 
 

pw= -γw h 

 
Where h is the height of the point under consideration measured 
from the ground water table. 
 
If a partial saturation is caused by capillary action, the pore 
water pressure, pw, can be approximate as: 
 

pw= -S γwh 

 
Where S is the degree of saturation at the point under 
consideration 
 
 



 
 
 
  
 
 
 
 
 
 
 
For the soil shown above 
 
At point A: 
 Total stress, pT = γ1 h1 + γ2 h2 
 Pore water stress, pw = -S1 γw h3 
  
At point B: 
 Total stress, pT = γ1 h1 + γ2 h 
 Pore water stress, 𝑝𝑝𝑤𝑤 = 0 
 
At point C: 
 Total stress, pT= γ1 h1+ γ2 h+ γ3 h4 
 Pore water stress, pw= γw h4 
 
 
COMPRESSIBILITY OF SOIL 
 
The increase in stressed caused by foundation and other loads 
compresses a soil layer. This compression is caused by (1) 
deformation of soil particles, (2) relocation of soil particles, and 
(3) expulsion of water or air from the void spaces. 

Capillary 
rise WT 

S1, γ2, e 

Ssat= 1 γ3S=1  

𝛾𝛾1 

h2 

h3 

h4 

A 

B 

C 

h1 

h 



 
Soil settlement may be divided into three categories: 

1. Immediate settlement – caused by the elastic 
deformation of dry, moist, and saturated soils, without 
any change in moisture content. 

2. Primary consolidation settlement – caused by a 
volume change in saturated cohesive soils due to 
expulsion of water that occupies the void spaces. 

3. Secondary consolidation settlement – caused by 
plastic adjustment of soil fabrics. It is an additional 
form of compression that occurs at constant effective 
stress. 

 
SETTLEMENT FROM ONE DIMENTIONAL PRIMARY 
CONSOLIDATION 
 
Basic Settlement Formula 
 

H = Hs(1+ e);           Hs= 
H

1+ e
 

H '=  Hs �1+ e'�;     H'= 
H

1+ e
�1+ e'� 

∆H = H - H' 

∆H = H - 
H

1+ e
�1+ e'� 

∆H = H
1+ e - �1+ e'� 

1+ e
= 

 e- e'

1+ e
 

 
 

∆H= 
H(eo- e')

1+ eo
=H

∆e
1+ eo

 



Where: 
H = thickness of stratum 
eo = void ratio before the vertical load is applied 
e’ = void ratio after the vertical load is applied 
 
PRIMARY CONSOLIDATION SETTLEMENT OF NORMALLY 
CONSOLIDATED FINE-GRAINED SOILS 
 

∆H = H
Cc

1+ eo  log 
pf
po

 

 
 
Where: 
H = thickness of stratum 
Cc = compression index 
eo = initial void ratio 
po = initial vertical effective soil stress 
pf = final vertical effective soil stress 
pf= po+∆p 
 
 
PRIMARY CONSOLIDATION SETTLEMENT OF 
OVERCONSOLIDATED FINE-GRAINED SOILS 
 
When pf < pc 
 

∆H = H
Cs

1+ eo  log 
pf
po

 



 
When pf > pc 
 

∆H = H
Cs

1+ eo  log 
pc
po

 + H Cc

1+ eo  log 
pf
pc

 

 
Where: 
Cs= swell index 
pc = preconsolidation pressure 
 
 
OVERCONSOLIDATION RATIO, OCR 
 

OCR = 
pc
po

 

Where: 
pc = preconsolidation stress (past maximum vertical effective stress) 
po = overburden effective stress (concurrent vertical effective stress) 
 
If OCR = 1, the soil normally consolidated soil 
 
 
COMPRESSION INDEX, Cc: 
 
Skempton: 
For remolded clay: 
 

Cc = 0.007(LL - 7%) 



For undisturbed clay: 
 

Cc = 0.009(LL - 10%) 

 
Rendon-Herreo: 
 

Cc = 0.141 G1.2 �
1+ eo

G
�

2.38

 

 
Nishida: 
All clays 
 

Cc =1.15 (eo- 0.27) 

 
SWELL INDEX, Cs: 
The swell index is smaller in magnitude than the compression 
index. In most cases, 
 

Cs ≅ 
1
5

Cc to 
1

10
Cc 

Nagaraj and Murty: 
 

Cs=0.0463 
LL%
100

 ×G 

 



SETTLEMENT FROM SECONDARY CONSOLIDATION 
SECONDARY CONSOLIDATION CAN BE CALCULATED AS: 
 
 

Hs= C'
α H log �

t2
t1

� 

C'
α= 

Cα

1+ ep
; Cα= 

∆e
logt2- logt1

 

 

Where 
Cα=secondary compression index 
∆e = change in void ratio 
t1=time for completion of primary settlement 
t2=time after completion of primary settlement,   
         where settlement is required 
ep = void ratio at the end of primary consolidation 
ep = eo - ∆e 
H = thickness of clay layer 
 
Calculation of Consolidation Settlement under a Foundation 
 
The increase in vertical stress caused by a load applied over a 
limited area decreases by depth. To estimate the one-
dimensional settlement of a foundation, we can use the 
equations of this section. However, the increase in of stress ∆p 
should be the average increase in pressure below the center of 
the foundation. 
 
Assuming the pressure increase varies parabolically, the 
average pressure may be estimated as: 



 

∆pave= 
∆p1+ 4∆pm+∆pb

6
 

Where: 
∆p1=increase in pressure at the top of the layer 
∆pm=increase in pressure at the middle of the layer 
∆pb=increase in pressure at the bottom of the layer 
 
 
TIME RATE OF CONSOLIDATION 
 
The time is required to achieve a certain degree of consolidation 
U is evaluated as a function of the shortest drainage path within 
the compressible zone Hdr, coefficient of consolidation Cv, and 
the dimensionless time factor Tv. 
 
 

t= Tv 
(Hdr)2

Cv
 

 
Where: 
Hdr = one-half the thickness of the drainage layer if drainage 
occurs at the top and bottom of the layer (two-way drainage) 
Hdr = thickness of the drainage layer if drainage occurs at the 
top of the bottom only (one-way layer) 
 
 
 
 
 



Variation of Tv with U 
U% Tv U% Tv U% Tv U% Tv 

1  26 0.0531 51 0.204 76 0.493 
2 0.00008 27 0.0572 52 0.212 77 0.511 
3 0.00030 28 0.0615 53 0.221 78 0.529 
4 0.00071 29 0.0660 54 0.230 79 0.547 
5 0.00126 30 0.0707 55 0.239 80 0.567 
6 0.00196 31 0.0754 56 0.248 81 0.588 
7 0.00283 32 0.0803 57 0.257 82 0.610 
8 0.00502 33 0.0855 58 0.267 83 0.633 
9 0.00636 34 0.0907 59 0.276 84 0.658 

10 0.00785 35 0.0962 60 0.286 85 0.684 
11 0.0095 36 0.102 61 0.297 86 0.712 
12 0.0113 37 0.107 62 0.307 87 0.742 
13 0.0133 38 0.113 63 0.318 88 0.774 
14 0.0154 39 0.119 64 0.329 89 0.809 
15 0.0177 40 0.126 65 0.344 90 0.848 
16 0.0201 41 0.132 66 0.352 91 0.891 
17 0.0227 42 0.138 67 0.364 92 0.938 
18 0.0254 43 0.145 68 0.377 93 0.993 
19 0.0283 44 0.152 69 0.390 94 1.055 
20 0.0314 45 0.159 70 0.403 95 1.129 
21 0.0346 46 0.170 71 0.417 96 1.219 
22 0.0380 47 0.173 72 0.431 97 1.336 
23 0.0415 48 0.181 73 0.446 98 1.500 
24 0.0452 49 0.188 74 0.461 99 1.781 
25 0.0491 50 0.197 75 0.477 100 infinity 
 
The approximate values of time factor Tv are 
 
For U = 0 to 60% 



 

Tv = 
π
4

�
U%
100

�
2

 

 
For U > 60% 
 

Tv= 1.781- 0.933 log(100 - U%) 

 
The time factor Tv provides a useful expression to estimate the 
settlement in the field from the results of a laboratory 
consolidation. 

tfield

tlab
 = 

(Hdr field)2

(Hdr lab)2  

Also, t1
t2

 = U1
2

U2
2 

 
 
Where t1 = time to reach a consolidation of U1% 
             T2 = time to reach a consolidation of U2% 
 
The degree of consolidation at a distance z at any time is: 
 

Uz = 1 - 
pwz
pwo

 

 



The average degree of consolidation for the entire depth of layer 
at any time is: 
 

Uz = 
∆Ht

∆Hmax
 

 
Where 
 pwz=excess pore pressure at time t 
pwo=initial excess pore water pressure 
∆Ht =settlement of the layer at time t   
∆Hmax=ultimate settlement of the layer from primary consolidation 
 
 
Coefficient of Consolidation 
 

Root time method, Cv = 
0.848(Hdr)2

t90
 

Log time method, Cv = 
0.197(Hdr)2

t50
 

 
Where: 
t90=time for 90% consolidation � √t curve� 
t50=time for 50% consolidation (logt curve) 
 
Coefficient of Volume compressibility, mv 
 

mv= 
av

1+ eave
= 

(eo- e)/ ∆p
1+ eave

 

eave = 
e + eo

2
 



 
 
The hydraulic conductivity of the layer for the loading range is: 
 

k = Cv mv γw 

Where eo= initial void ratio 
             e = final void ratio 
            Δp = rise in pressure 
 
 
IMMEDIATE SETTLEMENT 
 
Immediate or elastic settlement of foundation occurs directly 
after application of a load, without change in moisture content. 
This depends on the flexibility of the foundation and the type of 
material on which it is resting. 
 
Immediate settlement of foundations resting on the ground 
surface of an elastic material of finite thickness is given by: 
 

∆H1=pB 
1 - μ2

 E
 If 

 
Where: 
p = net pressure applied in kPa or psf 
B = width or diameter of foundation in m or feet  
 μ = Poisson’s Ratio 
E = modulus of elasticity of soil in kPa or psf 
 If=influence factor (dimensionless) 
 



The influence factor for the corner of a flexible rectangular 
footing given as: 
 
 

If= 
1
π

�m1ln �
1 + �1 + m1

2

m1
�  +ln �m1 + �1 + m1

2�� 

 
 

Influence Factors for Foundation 

Shape m1 

If 
Flexible Rigid Center Corner 

Circle - 1.00 0.64 0.79 

Rectangle 

1 1.12 0.56 0.88 
1.5 1.36 0.68 1.07 
2 1.53 0.77 1.21 
3 1.78 0.89 1.42 
5 2.10 1.05 1.70 

10 2.54 1.27 2.10 
20 2.99 1.49 2.46 
50 3.57 1.8 3.00 

100 4.01 2.0 3.43 
 
 
Where m1 = length of foundation / width of foundation 
 

 
 
 
 



Values of Modulus of Elasticity 

Type of soil E 
psi kPa 

Soft clay 250-500 1,725-3,450 
Hard clay 850-2,000 5,865-13,800 

Loose clay 1,500-4,000 10,350-27,600 
Dense clay 5,000-10,000 34,500-69,000 

 
Values of Poisson’s Ratio 

Type of Soil Poisson’s Ratio 
Loose sand 0.2-0.4 

Medium sand 0.25-0.4 
Dense sand 0.3-0.45 
Silty sand 0.2-0.4 
Soft clay 0.25-0.25 

Medium clay 0.2-0.5 
 
 

TOTAL SETTLEMENT OF FOUNDATION 
 
The total settlement of a foundation is the sum of the primary, 
secondary, and immediate settlement. 
 

∆HT = ∆H +∆Hs + ∆Hi 

 
 
SHEAR STRENGTH OF SOIL 
 
The shear strength of soil may be attributed to three basic 
components. 



1. Frictional resistance to sliding between solid particles 
2. Cohesion and adhesion between particles 
3. Interlocking and bridging of solid particles to resist 

deformation 
 
MOHR-COULOMB FAILURE CRITERIA 
 
A material fails because of a critical combination of normal 
stress and shearing stress, and not from either maximum 
normal shear stress alone. This theory was presented by Mohr. 
Thus, a failure can be expressed as a function of normal and 
shearing stress as follows. 
 

τf = f(σ) 
 
For most soil mechanics problems, Coulomb suggested that the 
shear stress on the failure plane can be expressed as a linear 
function of normal stress. This relationship is known as Mohr-
Coulomb failure criteria and can written as: 
 

τf = C+ σ tan∅ 
 
Where C = cohesion 
              ᶲ = angle of internal friction 
 
These functions are shown in the figure below. The significance 
of the failure envelope is as follows. If the normal and shearing 
stress on a plane in a soil mass are such that they plot as point 
X, shear failure will not occur along that plane. If it plots at Y, 
shear failure will occur along that plane because it plots along 
that plane. Point Z cannot exist because it plots above the 
failure envelope and shear failure would have occurred already 
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Figure: Mohr’s failure envelope and Mohr-coulomb failure criteria 
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∅
2
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TRIAXIAL SHEAR TEST (SINGLE TEST) 
 
Cohesionless Soil 
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Figure: Single test on cohesionless soil 



The following equation can be derived from the figure: 
 

τ = σ tan ∅ = R sin2θ  
R = 1

2� (σ1- σ3) = τmax 

sin∅= 
σ1 - σ3

σ1 + σ3
 

θ = 45°+ ∅ 2⁄  
 
 
 
 
COHESIVE SOIL 
 
 
 

τ = C + σ tan∅ = R sin2θ 

Where: 
σ1 =Major principal stress at failure 
σ3=Minor principal stress at failure  
τ = Shear stress 
C = Cohesion of soil 
∅=angle of internal friction 
θ = angle that the failure plane makes with the major principal plane. 
 



 
Drained and Undrained Triaxial Test 
 
For drained triaxial test 𝜎𝜎’1 and 𝜎𝜎’3 are taken as the effective 
principal stresses. For undrained triaxial test, 𝜎𝜎1 and 𝜎𝜎3 are 
taken as the total principal stresses. 
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Figure: Single test on cohesive soil 
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TRIAXIAL TEST (SERIES)  
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R1 = 
σ1 - σ3

2
;  R2 = 

σ'
1 - σ'

3

2
 

C1 = 
σ1 +  σ3

2
;  C2 = 

σ'
1 +  σ'

3

2
 

sin∅= 
R2 - R1

C2 – C1
;  c = x' tan∅  

x' =x-C1 and x=
R1

sin∅
 

c = R1cos∅ - (C1 -  R1sin∅) tan∅ 

c = R2cos∅ - (C2 -  R2sin∅) tan∅ 

 
Unconfined Compression Test (Uniaxial) 

Cu 

∅ = 0 

Figure: Unconfined compression test 
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Cu = R = 
σ1

2
 

qu = 2Cu 

 
 
Where qu = unconfined compression strength 
 
DIRECT SHEAR TEST 
Direct shear test is the simplest form of shear test. The test 
equipment consists of a metal shear box in which the soil 
sample is placed. The sizes of the sample used are usually 
50mm x 50mm or 100mm x 100mm across and about 25mm 
high. The box is split horizontally into halves. A normal force is 
applied from the top of the shear box. Shear force is applied by 
moving half of the box relative to the other to cause failure in the 
soil sample. 
 

SHEAR FORCE 

Porous stone 

Figure: Direct shear test arrangement 

Soil Specimen 

Soil Specimen 

NORMAL FORCE 
Loading plate 

Porous stone 
Shear box 



Normal stress, σ = Normal force
Cross-sectional area of the specimen

 

Shear stress, τ = Resisting shear force
Cross-sectional area of the specimen 

 

 
LATERAL EARTH PRESSURE 
 
Active earth pressure coefficient, Ka – the ratio between the 
lateral and vertical principal effective stresses when an earth 
retaining structure moves away (by a small amount) from a 
retained soil.  
 
Passive earth pressure coefficient, Kp – the ratio between the 
lateral and vertical principal effective stresses when an earth 
retaining structure is forced against a soil mass. 

F 

H/3 

Ph 

𝜎𝜎v 
Unit weight, 𝛾𝛾 

𝜎𝜎h 

H 



Earth Pressure at Rest 
 
If the retaining structure does not move either to the right or to 
the left of its initial position, the soil mass will be in a state of 
elastic equilibrium, meaning, the horizontal strain is zero. The 
ratio of the horizontal stress to the vertical stress is called the 
coefficient of earth pressure at rest, Ko. 
 

Ko= 
σh

σv
 = 1 - sin∅ 

Where ∅ is the drained friction angle 
 
For dense sand backfill: 
 

K o= (1 - sin∅)+ �
γd

γdmin
� 5.5 

 
Where: 
γd =actual compacted dry unit weight of the sand behind the wall 
γdmin = dry unit weight of t5he sand in the loosest state 
 
 
For fine-grained normally consolidated soils: 
 

Ko = 0.4 4+ 0.42 ( PI% 100)⁄  

 
 
 
 



For overconsolidated clays: 
 

Ko (overconsolidated) = Ko (normally consolidated) 

OCR = 
Preconsolidation pressure

Present effective overburden pressure
 

ph=  Ko γ H 
F= 1

2�  KoγH2 
 
 
 
 
RANKINES THEORY 
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Fa 

i 

Active case Passive case 

i i 

Fp 

Figure: Vertical face and inclined backfill 



Coefficient of active pressure: 
 
 
 

Ka = 
cosi - �cos2i- cos2∅

cosi + �cos2i- cos2∅
 cosi 

 
Coefficient of passive pressure: 
 

Kp = 
cosi + �cos2i- cos2∅

cosi - �cos2i- cos2∅
 cosi 

 
 
Rankine’s Theory (for horizontal backfill) 

Fa Fp 

Active case Passive case 

Figure: Vertical face and horizontal backfill 
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Figure: Wall sloping face (active case) 

Slip plane 

 
Coefficient of active pressure: 
 

Ka = 
1 - sin∅
1 + sin∅

 

 
Coefficient of passive pressure 
 
 

Ka = 
1 + sin∅
1 - sin∅

 

 
COULOMB’S THEORY 
 



Because of frictional resistance to sliding at the face of the wall, 
Fa and Fp is inclined at an angle of 𝛿𝛿 with the normal to the wall, 
where 𝛿𝛿is the angle of wall friction 

ACTIVE PRESSURE COEFFICIENT 
 

Ka = 
cos2(∅- β)

cos2βcos(β + δ) �1 + � sin(∅+ δ) sin(∅-i)
cos(β + δ) cos(β-i)�

2 
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Figure: Wall sloping face (passive case) 



The inclination of the slip plane to the horizontal is: 
 

tanθa = 
√sin∅ cosδ

cos∅�sin(∅ + δ)
 +tan∅ 

 

The effect of wall friction on Ka is small, and is usually neglected. 
For 𝛿𝛿 = 0: 

Ka = 
cos2(∅- β)

cos3β �1 + � sin∅sin(∅ - i)
cosβcos(β - i)�

2 

 

When i=0 and δ=0: 
 

Ka = 
cos2(∅- β)

cos3β �1 + � sin∅sin(∅ - i)
cosβcos(β - i)�

2 

 



For wall with vertical back face supporting granular soil backfill 
with horizontal surface (i.e. i = 0ᵒ and β = 0ᵒ), the above 
equation yields  

Ka = 
cos2(∅- β)

cos3β �1 + � sin∅sin(∅ - i)
cosβcos(β - i)�

2 

 

PASSIVE PRESSURE COEFFICIENT 

Kp = 
cos2(∅ +  β)

cos2βcos(β - δ) �1 - �sin(∅ + δ) sin(∅ + i)
cos(β - δ) cos(β - i)�

2 

 

The inclination of the slip plane to the horizontal is 
 

tanθp = 
√sin∅ cosδ

cos∅�sin(∅ + δ)
 - tan∅ 

 
 
 



For frictionless wall with vertical back face supporting granular 
soil backfill with horizontal surface (i.e.δ = 0ᵒ,  i = 0ᵒ and β = 0ᵒ): 
 

Kp = 
1 + sinθ
1 - sin θ

 

 
The critical value of θ is: 

θ = θcr = 45° + ∅ 2⁄  

 
RETAINING WALLS 
 
A retaining wall may be defined as a structure whose primary 
purpose is to prevent lateral movement of earth or some other 
material. For some special causes, as in basement walls or 
bridge abutments, a retaining wall may also have a function of 
supporting vertical loads. 
  
Types of Retaining Walls 

(a) Gravity retaining wall 



 
Gravity retaining wall is usually built of plain concrete. This 
type of wall depends only on its own weight for stability, and 
hence, its height is subject to some definite practical limits. 
 
Semi-gravity wall is in essence a gravity wall that has been 
given a wider base (a toe or heel or both) to increase its 
stability. Some reinforcement is usually necessary for this type 
of wall. 

Toe  

Face 
Stem  

Back  

Heel  

(b) T-shaped retaining wall 

(d) Counterfort retaining wall 

Counterfort 



T-shaped wall is perhaps the most common cantilever wall. For 
this type of wall, the weight of the earth in the back of the stem 
(the backfill) contributes to stability. 
 
L-shaped wall is frequently used when property line restrictions 
forbid the use of a T-shaped wall. On the other hand, when it is 
not feasible (due to construction limitation) to excavate for a 
heel, a reversed L-shaped may served the need. 
 
Counterfort retaining wall, consists of three main component: 
base, stem, and intermittent vertical ribs called counterforts, 
which tie the base and the stem together. These ribs, which acts 
as tension ties, transform the stem and heel into continuous 
slabs supported on three sides – at two adjacent counterforts 
and at the base of the stem. 
 
Buttressed wall is constructed by placing the ribs on the front 
face of the stem where they act in compression. 
 
Bridge abutment is a retaining wall, generally short and 
typically accompanied by wing walls. 

Beam   

(b) Counterfort retaining wall 

Deck  

Fill  

Slab Face 
Stem  

Back  

Heel  

(c) L-shaped retaining wall 



ACTIVE PRESSURE ON WALL 
 

Ka  = 
1- sin∅
1 + sin∅

 (Rankine or Coulomb) 

 
Cohesion: 
pc1= 2c1 �Ka1    ;   Fc1 = pc1× H1 
pc2= 2c2 �Ka2    ;   Fc2 = pc2× H2 
 
Surcharge: 
p1= Ka1 q   ;   F1= p1 × H1 
p2= Ka2 q   ;   F2= p2 × H2 
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Soil: 
p3= Ka1 γ1 H1   ;   F3 = 1

2� p3H1 
p4= Ka2 γ1 H1   ;   F4 = p4H2 
p5= Ka2 γb2 H2   ;   F5 = 1

2� p5H2 
 
Water: 
p6= γw H2   ;   F5 = 1

2� p5H2 
 
Total active force: 
Fa = F1 + F2 + F3 + F4 + F5 + F6 - Fc1 - Fc2 
 
Total active moment: 
Ma= F1y1 + F2y2 + F3y3 + F4y4 + F5y5 + F6y6 - Fc1yc1 - Fc2yc2 
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PASSIVE PRESSURE ON WALL 

 

Ka  = 
1- sin∅
1 + sin∅

 (Rankine or Coulomb) 

 
Cohesion: 

p1= 2c�Kp   ;   F1= p1H 

 
Soil: 

p2= KpγbH   ;    F2= 
1
2

p2H 
 
Water: 

p3= γwH   ;    F3= 
1
2
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Total passive resistance, Fp = F1 + F2 + F3 
Total passive moment, Mp= F1y1 + F2y2 + F3y3 
 
FACTORS OF SAFETY 
 
The structural elements of the wall should be so proportioned 
that the following safety factors are realized: 
 

Factor of Safety Against Sliding: 
 

FSS= 
Resisting forces

Active forces
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Figure: Forces acting on wall 

Wsa 

Fa 



For granular backfill, FSS ≥ 1.5 
For cohesive backfill, FSS ≥ 2.0 
 
 
Factor of Safety Against Overturning About the Toe: 
 

FSS= 
Stabilizing moment 
Overturning moment

 

 
For granular backfill, FSS ≥ 1.5 
 
For cohesive backfill, FSS ≥ 2.0 
 
The horizontal components of the lateral forces tends to force 
the wall to slide along its base. The resisting force is provided by 
the horizontal forces composed of friction and adhesion, and by 
passive resistance of soil in front of the wall. The passive 
resistance is not to be counted on if there is a chance that the 
soil kin front of the wall may be eroded or excavated during the 
life of the wall. 
 
The force F at the base of the wall consist of the friction and 
cohesion. It is given by: 
 

F= μN+CbB 

Where N is the normal reaction, μ is the coefficient of friction cb 
is the base cohesion, and B is the base width of wall. 
 
 
 



Commonly assumed values of μ and cb are as follows: 
 
 

tan∅ > μ > (2 3⁄ )tan∅ 

0.5c  ≤ cb ≤ 0.75c 
 
 
 
Pressure Distribution at Base of Wall 
 
The actual bearing pressure on the base of the wall is a 
combination of normal forces and the effects of moments. 
 

Ry = � Fy 
Ryx =RM-OM 

e = 
B
2

- x 
 
 
Where: 
RM = righting or stabilizing moments 
OM = overturning moments 
 
Note that in computing RM and Ry, the passive resistance is not 
to be counted on if there is a chance that the soil in front of the 
wall may be eroded or excavated during the life of the wall. 
 
When e ≤ B 6⁄  
 



Considering 1m length of wall 
 

qmin = -
Ry

B
�1 ± 

6e
B

� 

When e > B 6⁄  
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Figure: stress distribution at base of wall when e≤ B/6 
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Considering 1m length of wall 
 

qmax = - 
2R1

3x
 

 
Lateral Pressure on Retaining Walls Due to Point-load 
Surcharge 
 

 
The lateral stress on the wall induced by a point-load surcharge 
is given by: 

For m >0.4; σx = 
1.77Q

H2
m2n2

(m2+ n2)3 

For m ≤0.4; σx=
0.28Q

H2
n2

(0.16 + n2)3   

H  
F  

𝜎𝜎z (kPa) 

x = mH Q (kN) 

z =
 n

H 

Figure: Stress on wall caused by a point load 



Where Q is the point load (kN or lbs), H is the height of wall (m 
or feet), and σx is the stress (kPa or psf) 
The force F per unit length of wall caused by the point load can 
be obtained by approximating the area of the shaded portion 
using trapezoidal rule or Simpson’s one-third rule. 
Lateral Pressure on Retaining Walls Due to Line-load Surcharge 
 
The lateral stress on the wall induced by a line-load 
surcharge is given by: 

 

For m > 0.4; σx = 
4q
πH

m2n
(m2 + n2)3 

For m ≤ 0.4; σx=
0.203q

H
n

(0.16 + n2)2   
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F  

𝜎𝜎z  

x = mH Q (kN) 

z =
 n

H 

Figure: Stress on wall caused by a line load 



Where q is the line load (kN/m or lbs/ft), H is the height of wall 
(m or feet), and σx is the stress (kPa or psf) 
 
The force F per unit length of wall caused by the strip load can 
be obtained by approximating the area of the shaded portion 
using trapezoidal rule or Simpson’s one-third rule. 
 
Lateral Pressure on Retaining Walls Due to Strip-Load 
Surcharge 

 
The lateral stress on the wall induced by a strip-load surcharge 
is given by: 
 

σx = 
2q
H

(β-sinβ cos2α) 

L  

 q (kN/m) 

 

L/2 

 

F 

 𝜎𝜎z (kPa)  

 

z  

 

H 

 

Figure: Stress on wall caused by a strip load 

 



The force F per unit length of wall caused by the strip load can 
be obtained by approximating the area of the shaded portion 
using trapezoidal rule, or Simpson’s one-third rule, or by 
integration of σx with limits from 0 to H. 
 
 
BRACED CUTS 
 
Bracing is used when temporary trenches for water, sanitary, 
and other lines are opened in soil. A braced cut is an excavation 
in which the active earth pressure from one bulkhead. The box-
shoring and close-sheeting methods of support are shown in the 
figure below 
 
The load is transferred to the struts at various points, so the 
triangular active pressure distribution does not develop. Since 
struts are installed as the excavation goes down, the upper part 
of the wall deflects very little due to the strut restraint. The 
pressure on the upper part of the wall is considerably higher 
than is predicted by the active earth pressure equations. 
 
The soil removed from the excavation is known as the spoils. 
Spoils should be placed far enough from the edge of the cut so 
that they do not produce a surcharge lateral loading 
 
The bottom of the excavation is referred to as the base of the 
cut, mudline, dredge line, and toe of the excavation. 
Excavations below the water table should be dewatered prior to 
cutting. 
 
 
 
 



BRACED CUTS IN SAND 
 
The analysis of the braced cuts is approximate due to the 
extensive bending of the sheeting. For drained san, the 
pressure distribution is approximately uniform with depth. 

 BRACED CUTS IN STIFF CLAY 
 
For undrained clay ∅ =  0°. In this case, the lateral pressure 
distribution depends on the average undrained shear strength 
(cohesion) of the clay. If γH c ≤4⁄ , the clay is stiff and the 
pressure distribution is given as: 
 

pmax= 0.2 γ H to 0.4 γ H 

strut 

strut 

strut 

Pmax = 0.65Ka𝛾𝛾H 

H 

(a)Pecks pressure diagram 

strut 

strut 

strut 

Pmax = 0.65Ka𝛾𝛾H 

0.1 H 

(b)Tschebotarioff 

0.7 H 

0.2 H 

Figure: Pressure diagram for design of bracing system 



 
Except when the cut is underlain by deep, soft, normally 
consolidated clay, the maximum pressure can be approximated 
as 

pmax= �1- 
4c
γH

 � γH  

BRACED CUTS IN SOFT CLAY 
 
If  γH c ≥ 6⁄ , the clay is soft and the lateral pressure distribution 
will be shown below 
 

pmax= �1- 
4c
γH

� γH 

 
 

0.25 H 

strut 

strut 

strut Pmax  

0.25 H 

0.5 H 

Figure: Peck’s pressure diagram for stiff clay 



 
For cuts underlain by deep, soft, normally consolidated clays, 
the maximum pressure is: 
 

pmax = γ - 4c 

 
If 4 < γH c⁄ <6, the soft and stiff clay cases should both be 
evaluated, the case that results in greater pressure should be 
used when designing the bracing. 
 
 
ANALYSIS OF STRUT REACTION 
 
Since braced excavations with more than one strut are statically 
indeterminate, strut forces and sheet piling moments may be 
evaluated by assuming hinged beam action. 
 

strut 

strut 

strut 

0.25 H 

0.75 H 

Figure: Peck’s pressure diagram for soft clay 
Pmax  



R2A + R2B 

Figure: Determination of strut load 
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The strut load may be determined by assuming that the vertical 
members are hinged at each strut level except the topmost and 
the bottommost ones. 
 

 
BEARING CAPACITY OF SOILS 
 
DEFINITIONS 
Foundation is that part of structure which transmits the building 
load directly into the underlying soil. If the soil conditions at the 
site are sufficiently strong and capable of supporting the 
required load, then shallow spread footings or mats can be used 
to transmit the load. 
 
Footing is a foundation consisting of a small slab for transmitting 
the structure load to the underlying soil. Footings can be 
individual slabs supporting single columns or combined to 



support two or more columns, or be a long strip of concrete slab 
(width B to length L ratio is small, i.e., it approaches zero) 
supporting a load bearing wall, or a mat. 
 
Shallow foundation is one in which the ratio of the embedment 
depth to the minimum plan dimension, which is usually the 
width, is Df B⁄  ≤ 2.5. 
 
Embedment depth (D1) is the depth below the ground surface 
where the base of the foundation rests. 
 
Ultimate bearing capacity (qu) is the maximum pressure that the 
soil can support. 
 
Ultimate bearing capacity (qult) is the maximum pressure that the 
soil can support above its current overburden pressure. 
 
Allowable bearing capacity or safe bearing capacity (qa) is the 
working pressure that would ensure a margin of safety against 
collapse of the structure from shear failure. The allowable 
bearing capacity is usually a fraction of the ultimate net bearing 
capacity. 
Overburden Pressure q, is the pressure (effective stress) of the 
soil removed to place the footing. 
 
Factor of safety or safety factor (FS) is the ratio of the ultimate 
net bearing capacity to the allowable bearing capacity or the 
applied maximum vertical stress. In geotechnical engineering, a 
factor of safety between 1.5 and 5 is used to calculate the 
allowable bearing capacity 
 
 
 



VARIOUS TYPES OF FOOTING ON SOIL 
 

 
 
 
 
 
 
 
 

L  L  

B  B2 

B B1 

B1 

Combined footing 
Isolated footing 



BEARING CAPACITY ANALYSIS 
 
Bearing capacity analysis is the method used to determine the 
ability of the soil to support the required load in a safe manner 
without gross distortion resulting from objectionable settlement. 
The ultimate bearing capacity (qu) is defined as that pressure 
causing a shear failure of the supporting soil lying immediately 
below and adjacent to the footing. Generally three modes of 
failure have been identified: 
 

1. General Shear Failure: a continuous failure surface 
develops between the edge of the footing and the 
ground surface. This type of failure is characterized by 
heaving at the ground surface accompanied by tilting 

L  

L  

B  

B 

Df 

Wall footing Mat or Raft 



of the footing. It occurs in soil of low compressibility 
such as dense sand or stiff clay. 

2. Local Shear Failure: a condition where significant 
compression of the soil occurs but only slight heave 
occurs at the ground surface. Tilting of the foundation 
is not expected. This type of failure occurs in highly 
compressible soil and ultimate bearing capacity is not 
well defined. 

3. Punching Shear failure: a condition that occurs where 
there is relatively high compression of the soil 
underlying the footing with neither heaving at the 
ground surface nor tilting of the foundation. Large 
settlement is expected without a clearly defined 
ultimate bearing capacity. Punching will occur in low 
compressible soil if t5he foundation is located at a 
considerable depth below ground surface. 

 
ULTIMATE SOIL BEARING CAPACITY 
 
In general, the ultimate bearing capacity of soil is expressed as 
by: 
 

qu= Kc c Nc + Kq q Nq + Kγ γe B Nγ 

 
 
Where: 
qu=ultimate bearing capacity 
γe =unit weigth of the soil in  kPa or pcf 
B = width of footing in meter or feet 
Nγ=factor for unit weight of soil 
Nc=factor of soil cohesion 



Nq=factor of overburden pressure 
q = overburden pressure (effective stress) 
Kc , Kq , Kγ =constant 
 
TERZAGHI’S BEARING CAPACITY EQUATIONS 
 
Terzaghi’s bearing capacity equations are based on the 
following assumptions: 

• Depth of foundation is less than or equal to its width 
• No sliding occurs between foundation and soil(rough 

foundation) 
• Soil beneath foundation is homogeneous semi-infinite 

mass 
• Mohr-Coulomb model for soil 
• General shear failure mode is the governing mode 

(but not the only mode) 
• No soil consolidation occurs 
• Foundation is very rigid relative to the soil 
• Soil above bottom of foundation has no shear 

strength; is only a surcharge load against the 
overturning load 

• Applied load is compressive and applied vertically to 
the centroid of the foundation 

• No applied moments present 
 
GENERAL SHEAR FAILURE: 
 
Long Footings 
 

qu = cNc + qNq + 1
2� γeBNγ 



Square Footings 
 

qu = 1.3cNc +  qNq + 0.4γeBNγ 

 
Circular Footings 
 

qu = 1.3cNc +  qNq + 0.3γeBNγ 

Where: 
γe =unit weight of soil at base of footing in kPa or pcf 
B = width of footing in meter or feet 
c = cohesion of soil in kPa of psf 
Nγ=factor for unit weight 
Nc =factor of soil cohesion 
Nq =factor of overburden pressure 
q = overburden pressure (effective stress) at base of footing 
Df =depth of footing in meter or feet 
 
LOCAL SHEAR FAILURE 
 
For local shear failure, it may be assumed that 

 

C= 
2
3

c 

tan ∅ = 
2
3

c 

 

 
 



Long Footing (Strip Footing) 
 

qu = cNc + qNq + 1
2� γeBNγ 

Square Footing 
 

qu = 1.3cNc +  qNq + 0.4γeBNγ 

Circular Footing 
 

qu = 1.3cNc +  qNq + 0.3γeBNγ 

 
ALLOWABLE BEARING CAPACITY ANF FACTOR OF 
SAFETY 
 
The allowable bearing capacity, qa, is calculated by dividing the 
ultimate bearing capacity, qu, by a factor of safety, FS. The 
factor of safety is intended to compensate for the assumptions 
made in developing the bearing capacity equations, soil 
variability, inaccurate soil data, and uncertainties of loads. 
 
Gross Allowable Bearing Capacity: 
 

qall = 
qu
FS

 

 
 
 
 



Net Allowable Bearing Capacity: 
 

qall(net)= 
qunet
FS

 
qunet = qu- q 

 
 
 
GROSS ALLOWABLE BEARING CAPACITY WITH FS WITH 
RESPECT TO SHEAR 
 
The gross allowable bearing capacity using a factor of safety on 
shear strength of soil may be computed using the developed 
cohesion cd and values of Nc, Nq, and Nᵧ derived using the 
developed angle of friction ɸd.  
 

Developed cohesion, cd= c FS⁄  

Developed angle of friction, ∅d= tan-1 �
tan∅
FS

� 
 
 
For example, on strip footing, qa =cdNc+ qNq+ 1

2
γeBnγ 

Alternatively, if the maximum applied foundation stress, 
(fa)max is known, the factor of safety can be computed by 
replacing qa by (fa)max. 
 

FS = 
qu

(fa)max- q
;q < (fa)max 

 
 
 



EFFECT OF WATER TABLE ON BEARING CAPACITY 
 
The unit weight of soil used in the equations for bearing capacity 
are effective unit weights. With the rising water table, the subsoil 
becomes saturated and the unit weight of submerged soil is 
greatly reduced. The reduction of this unit weight results in a 
decrease in the ultimate bearing capacity of the soil. 
 
Groundwater level above base footing 
 

 
q = γ(Df - Dw) + γbdw 

Unit Weight, γe =  γb 

 
 

𝛾𝛾 = unit wt. of soil 
𝛾𝛾b = 𝛾𝛾sat – 𝛾𝛾w 

W.T. 

𝛾𝛾 

Df 

dw 
𝛾𝛾b 

B 



Groundwater level at the base of footing 

 

overburden pressure, q= γDt 

Unit Weight, γe =  γb 

 
Groundwater level below the base of footing 
 
 

overburden pressure, q= γDt 
 

𝛾𝛾 = unit wt. of soil 
𝛾𝛾b = 𝛾𝛾sat – 𝛾𝛾w 

W.T. 

𝛾𝛾 Df 

𝛾𝛾b 

B 



When dw < B 
 

γe= γb (1 + dw B⁄ ) = approx. 

When dw ≥ B 
 
 

MEYERHOF’S EQUATION 
 
(General Bearing capacity equation) 
 
 
 

γe = γ 

dw < B 

𝛾𝛾 = unit wt. of soil 
𝛾𝛾b = 𝛾𝛾sat – 𝛾𝛾w 

W.T. 

𝛾𝛾 

Df 

𝛾𝛾b 

B 

W.T. dw  ≥ B, use 𝛾𝛾e = 𝛾𝛾 
𝛾𝛾e = 𝛾𝛾b (1 + dw/B) 



Vertical load: 
 

qu= cNcScdc + qNqSqdq + 0.5γBNγsγdγ 

 
Inclined load: 
 

qu= cNcScdcic+ qNqSqdqiq + 0.5γBNγsγdγiγ 

 
Bearing Capacity Factors: 
 

Nd= eπ tan∅tan2�45°+ ∅ 2⁄ � 

Nc= �Nq- 1� cot ∅ 

Nγ= �Nq- 1� tan(1.4∅) 

 
BEARING CAPACITY FROM STANDARD PENETRATION 
TEST (SPT) 
 
Allowable bearing capacity 
 

qa= 0.41Ncorρa (kpa) 
Ncor = CNCwN 

 
Where: 
N = standard penetration number 
CN=correction factor for over burden pressure 



Cw = correction factor if the groundwater level is below the base of footing 
 
PILES AND DEEP FOUNDATION 
 
PILE CAPACITY FROM DRIVING DATA 
 
(Dynamic Pile Formulas) 
 
AASHTO Formula  
 

Qu =
2h(Wr+ Arp)

s +0.1
 

Recommended factor of safety = 6 
 
Navy-McKay Formula 
 

Qu=
ehEh

s �1 + 0.3
Wp
Wr

�
  ,lbs 

 
Recommended factor of safety = 6 
 
Eytelwein Formula 
 

Qu=
ehEh

s + 0.1�Wp Wr⁄ �
  , lbs 

 
Recommended factor of safety = 6 



Where: 
eh = efficiency of hammer 
Ar =ram cross-section, in2 
P = pressure, psi 
Eh = rated hammer energy, in-lb 
Wp = total weight of pile, pounds 
Wr = weight of ram, pounds 
 
THEORETICAL PILE CAPACITY 
 
The ultimate load capacity Qu consists of two parts. One part 
due to friction,called skin friction or shaft friction or side shear 
Qf, and the other is due to end bearing at the base or tip of the 
pile Qb. 
 

Qu = Qf + Qb 

 
Where: 
Qf = skin/shaft friction or side shear (ultimate) 
Qb = end bearing or point resistance (ultimate) 
 
The Alpha Method 
 
The alpha method determines the adhesion factor, 𝛼𝛼 as the ratio 
of the skin friction factor, fs , to the undrained shear strength 
(cohesion), cu. 
 

Qf = α cuPL 
Qb= fb Ab 

cu= 
qu
2

 of 
su

2
 

 



The Beta Method 
 
In beta method, the friction capacity is estimated as a fraction of 
the average effective vertical stress (as evaluated halfway down 
the pile) 
 

Qf = β peffPL 
Qb= Nq�peff�b

Ab 
 
 
CAPACITY OF PILE GROUP 
 
Some piles are installed in groups, spaced approximately 4 to 
3.5 times the pile diameter apart. The files function as a group 
due to the use of the concrete load-transfer cap encasing all of 
the pile heads. The weight of the cap subtracts from the gross 
group capacity. The capacity due to the pile cap resting on the 
ground (as a spread footing) is disregarded. 
For cohesionless (granular) soils, the capacity of the pile group 
is taken as the sum of the individual capacities, although the 
actual capacity will be greater. In-situ tests should be used to 
justify any increase. 
For cohesive soils, the group capacity is taken as the smaller of 
(a) the sum of the individual capacities and (b) the capacity 
assuming block action. The block action capacity is calculated 
assuming that the piles from a large pier whose dimensions are 
group’s perimeter. The block depth, L, is the distance from the 
surface to the depth of the pile points. The width of the pile 
group as measured from the outside (not center) of the 
outermost piles. 

Perimeter, p = 2(b + w) 
Area, Ap=(b + w)2 



The average undrained shear strength, cu, along the depth of 
the piles is used to calculate the skin friction capacity. The 
average undrained shear strength at the pile tips, cub , is used to 
calculate the end-bearing capacity. 
The group capacity can be more or less than the sum of the 
individual pile capacities. The file group efficiency, is 
 

ηG = 
Group capacity, Qug

∑ individual capacities, Qu
 

 

TENSILE CAPACITY OF PILES 

Tension piles are intended to resist upward forces Basement 
and buried tanks below water level may require tension piles to 
prevent “floating away”. However, tall buildings subjected to 
overturning moments also need to resist pull-out. Unlike piles 
loaded in compression, the pull-out capacity of piles does not 
include the tip capacity. The pullout capacity includes the weight 
of the pile and the shaft resistance (skin friction). 
 
SETTLEMENT OF PILE GROUP 
 
Piles bearing on rock essentially do not settle. Piles in sand 
experience minimal settlement. Piles in clay may experience 
significant setting. The settlement of a pile group can be 
estimated by assuming that the support block (used to calculate 
the group capacity) extends to a depth of only 2/3 of the pile 
length. Settlement above (2/3)L is assumed to be negligible. 
Below the (2/3)L depth, the pressure distribution spreads out at 



a vertical: horizontal rate of 2:1. The Presence of the lower L/3 
pile length is disregarded. 
 

SLOPE STABILITY 

The maximum slope for cuts in cohesionless (drained) sand is 
the angle of internal friction or angle of repose, Ø. In cohesive 
soils such as clay however, the maximum slope for cuts is more 
difficult to determine. 
 
The soil or rock in a slope exists in a state of equilibrium 
between gravity forces tending to move the material down the 
slope and the internal shearing resistance of the material. A 
slope failure occurs when the force tending to cause rupture 
exceeds the resisting force. The overstressing of a slope or 
reduction in shear strength may cause displacements that may 
be very slow or very rapid and progressive. 
 
Extremely slow movements in soils are called soil creep Rapid 
movements of intact or nearly intact soil or rock masses are 
called slides. Rock or soil that detaches from a nearly vertical 
slope and descends mainly through the air by falling, bouncing, 
or rolling is called a fall. Very soft cohesive soils can fail by 
lateral spreading or by mud flows. 
The factors to be considered for stability or slope are the 
cohesion of the soil, c, shear strength, τ, soil stratification and its 
in-place shear strength parameters. Seepage through the slope 
and the choice of potential slip surface and up to the complexity 
of the problem 
 
 



FACTORS OF SAFETY 
 
The primary purpose of analyzing slope stability is to determine 
the factor of safety. In general, factor of safety is the ratio the 
average shear strength of soil, τ, to the average shear stress 
developed along the potential failure surface. 
 

FS = 
τ
τd

 

τ = c + σ tan ∅ 

τd = cd + σ tan ∅d 
 
 
 
Factor of safety with respect to strength: 
 

FSs =  
τ
τd

 = 
c + σ tan ∅

cd + σ tan ∅d
 

 
Factor of safety with respect to cohesion: 
 

FSc =  
c
cd

 

Factor of safety with respect to friction: 
 

FS∅ =  
 tan ∅
tan ∅d

 



Relation of FSs, FSc, FS∅: 
 

FSs = FSc = FS∅ 
 
 
When Fs = 1, the slope is in a state of impending failure 
 
STABILITY OF INFINITE SLOPE WITHOUT SEEPAGE 
 
Infinite slope analysis is used when a layer of firm soil or rock 
lies parallel to a thin layer of softer material and the potential slip 
surfaces are very long compared to their depth. This occurs 
when a rock surface is parallel to the slope and there is a thin 
layer of soil overlying the rock. In this analysis, the driving forces 
of the uphill wedges and the resisting forces of the downhill 
wedges are ignored, and only the remaining central wedge is 
considered. 

Consider 1 m strip 
perpendicular to the 
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Figure: Analysis of infinite slope 
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Normal stress: 
 

σ = 
Nw

Area of base
 = 

W cos β
(1)( L cosβ)⁄  

 

σ = 
γVcosβ
L cosβ⁄  = 

γLH(1)cosβ
L cosβ⁄  

 
σ = γHcos2β 

 
Tangential stress: 

τ = 
Tw

Area of base
 = 

W sin β
(1)( L cosβ)⁄  

 

τ = 
γVsinβ
L cosβ⁄  = 

γLH(1)sinβ
L cosβ⁄  

 
τ = γH sinβ cos β 

FSs = 
c

γHcos2 β tan β
 + 

tan∅
tanβ

 

 
If FSs =1, H = critical depth, Hcr  
 

1 = 
c

γHcrcos2 β tan β
 + 

tan∅
tanβ

 

 
tanβ –tan∅

tanβ
 =  

c
γHcrcos2 β tan β

  



Hcr  = 
c
γ

1
cos2β(tanβ -tan∅)

 

 
STABILITY OF INFINITE SLOPE WITH SEEPAGE 
 
For soils with seepage and ground water level coincides with the 
ground surface: 
 

τ = c + σ' tan ∅ 

τd = cd + σ' tan ∅d 

Normal stress: 
 

σ = γsatHcos2β 

 
 
Effective stress: 
 

σ' = γ'Hcos2 β =�γsat - γw�Hcos2 β 

 
Tangential stress: 
 

τ = γsatH sin β cos β 

FSs = 
c

γsatH cos2 β tan β
 + 

γ' tan ∅
γsat tan β

 



FINITE SLOPE WITH PLANE FAILURE (CULMANN’S 
METHOD) 

 
Normal stress: 
 

σ = 
1
2

 γH �
sin(β - θ)

sinβ
� cos θ 

Critical angle of slip plane: 
 

θcr = 
β + ∅d

2
 ; cd =

1
4

γH �
1 -cos(β - ∅d)
sin β cos ∅d

� 
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Figure: Finite slope with plane failure 
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This equation can also be written as 
 

cd

γH
 = m = 

1 -cos(β - ∅d)
4sin β cos ∅d

 
 
 
Where m = stability number 
The values of 1/m for various β and ∅d are shown in the 
following table. 

 
Stability Numbers Based on Culmann’s Analysis 

ᵦ 
(ᵒ) ∅d 1/m ᵦ 

(ᵒ) ∅d 1/m ᵦ 
(ᵒ) ∅d 1/m ᵦ 

(ᵒ) ∅d 1/m 

10 0 45.72 30 10 32.66 50 25 29.64 80 0 4.77 
 5 181.84  15 56.70  30 44.00  5 5.29 

15 0 30.38  20 123.71 60 0 6.93  10 5.90 
 5 67.89  25 476.34  5 8.09  15 6.59 
 10 267.93 40 0 10.99  10 9.55  20 7.40 

20 0 22.69  5 14.16  15 11.42  25 8.37 
 5 40.00  10 18.90  20 13.91  30 9.55 
 10 88.68  15 26.51  25 17.36 90 0 4.00 
 15 347.27  20 40.06  30 22.39  5 4.37 

25 0 18.04  25 68.39 70 0 5.71  10 4.77 
 5 27.92  30 146.57  5 6.49  15 5.21 
 10 48.86 50 0 8.58  10 7.40  20 5.71 
 15 107.48  5 10.42  15 8.51  25 6.28 
 20 417.45  10 12.90  20 9.89  30 6.93 

30 0 14.93  15 16.37  25 11.63    
 5 21.27  20 21.49  30 13.91    

 
 
When cd = c and ∅d = ∅, then H = Hcr, 
 

Hcr = 
4c
γ

�
sin β cos ∅

1 – cos(β - ∅)� 



SLOPES WITH WATER IN THE TENSILE CRACK: 
 
When tensile cracks are developed at the top of the slope and 
filled with water, the stability of such slope can be determined in 
the following manner 

 
Zc = depth of crack 
Zw = depth of water in the crack 
X = length AB = (H - Zc)/sinƟ 
Ɵ = angle of failure plane 
W = weight of soil wedge ABCD 
F1 = force due to water in the crack 
 F2 = force due to pore water pressure along AB 
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Finite slope with water on tensile crack 

F1 



 
F1= 1

2
γwz1

2  

F2= 
1
2

γwzcX  =
1
2

γwzc (H -zC ) sin θ⁄  
 
Components of W and F1 along AB: 

F=W sin θ+ F1 cos θ 
 
Resisting force to F: 

R =cX + (W cos θ - F1 sin θ - F2) tan ∅ 
 
Factor of safety with respect to strength: 
 

FSs = 
R
F

 = 
cX + (W cos θ - F1 sin θ - F2) tan ∅

W sin θ+ F1 cos θ
 

The magnitude of FSs for the various trial wedges can be 
calculated by varying the value of θ. The minimum value of FSs 
is the factor of safety of the slope. 
 
 
ANALYSIS OF THE FINITE SLOPES WITH CIRCULAR 
FAILURE SURFACES – GENERAL FAILURE SURFACES: 
 
Modes of failure: 
Generally, finite slope failure occurs in one of the following 
diagrams: 
 
 
 
 
 



 

 

 
 
 
Two major classes of stability analysis procedure: 

1. Mass Procedure – the soil that formed the slope is 
assumed to be homogeneous and the mass of soil 
above the surface of sliding is taken as a unit 

2. Method of Slices – in this procedure, the non 
homogeneity of the soil and the pore water pressure 
can be taken into consideration and the soil above the 
surface of sliding is divided into a number of vertical 
parallel slices. 
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MASS PROCEDURE 
(Homogeneous Clay Soil with ∅ = 0) 

 
W1 = (Area of FCDEF) γ 
W2 = (Area of ABFEA) γ 
 
Driving force about O to cause instability: 
MD = W1L1 - W2L2 
Developed cohesion along the surface of sliding 
MR = cd(arcAED)(1)r 
MR = cdr2θ 
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Figure: Stability analysis in homogeneous clay(Ɵ = 0) 



For equilibrium: 
MR = MD 
cdr2θ = W1L1 - W2L2 

cd = 
W1L1 - W2L2

r2θ
 

 
Factor of safety against sliding: 
 

FSs = 
τ
cd

 = 
cu

cd
 

For critical circles 
 

cd = γHm or m = 
cd

γH
 

 
For critical height; FSs =1, H = Hcr and cd = cu 
 

Hcr  = 
cu

γm
 

Where m = stability number 
            cu = undrained shear strength 
            cd = developed cohesion 
 
TAYLOR SLOPE STABILITY CHART 
 
For saturated clay with slope of zero, the Taylor slope stability 
chart can be used to determine the factor of safety against slope 
failure. The Taylor chart makes the following assumptions: 

(a) There is no water outside the slope 



(b) There is no surcharge or tension cracks 
(c) Shear strength is derived from cohesion only and is 

constant with depth 
(d) Failure takes place as rotation on a circular arc 

 
 

FSs = No
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Figure: Taylor Slope Stability Chart 
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The Taylor chart shows that toe circle failures occur in slopes 
steeper than 53 degree. For slopes less than 53 degree, slope 
circle failure, toe circle failure, or base circle failure may occur. 
For β > 53° , all circles are toe circles. The location of the center 
of critical circle can be found using the graph below 
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METHOD OF SLICES 
 
The method of slices was developed in the early 1920s in 
Sweden and was later refined by Bishop to consider interslice 
forces to some degree. This analysis method can accommodate 
complex slope geometries, variable soil layering and strengths, 
variable pore water pressure conditions, internal reinforcement, 
and the influence of external boundary loads, but it is only 
applicable to circular slip surfaces. It accomplishes this by 
dividing a slope into a series of vertical slices for analysis, with 
limiting equilibrium conditions evaluated for each slice, as 
shown 

 
Each slice can have different layering, different strength, and 
different pore water pressure than the other slices. If the 
condition of equilibrium is satisfied for each slice, then it is 

Layer 1 

Layer 3 

10 

 

9 

 

8 

 

7 

 

6 

 

5 

 

4 

 

3 

 

2 

 

1 

 

11 

 

Radius of the trial circle 

Radius of the trial circle 

Layer 2 

Typical slope stability analysis using the method of slices 



considered that the entire mass is in equilibrium. The force 
system on a single slice is shown 
 

FS = 
∑ (cbn +wn tan ∅) 1

mα(n)

n =p
n =1

∑ Wn sin αn
n =p
n=1 

 

mα(n)= cos αn + 
tan∅ sin αn

FS
 

 
Note that the FS is present on both sides of the equation. 
Hence, a trial-and error solution or a programmable calculator is 
necessary to find the value of FS. 
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Figure: Forces acting on the slice on the nth slice in the Bishop simplified 
method of slices 
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